
Evaluating the Educational Impact of Visualization
Report of the Working Group on “Evaluating the Educational Impact of Visualization”

Thomas L. Naps
(co-chair)

U Wisconsin Oshkosh
naps@uwosh.edu

Guido Rößling (co-chair)
TU Darmstadt, Germany

roessling@acm.org

and additional
authors named

in Section 6

ABSTRACT
The educational impact of visualization depends not only on
how well students learn when they use it, but also on how
widely it is used by instructors. Instructors believe that
visualization helps students learn. The integration of visu-
alization techniques in classroom instruction, however, has
fallen far short of its potential. This paper considers this
disconnect, identifying its cause in a failure to understand
the needs of a key member in the hierarchy of stakehold-
ers, namely the instructor. We describe these needs and
offer guidelines for both the effective deployment of visual-
izations and the evaluation of instructor satisfaction. We
then consider different forms of evaluation and the impact
of student learning styles on learner outcomes.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer & Infor-
mation Science EducationComputer Science Education

General Terms
Algorithms

Keywords
Visualization, Animation, Pedagogy

1. INTRODUCTION
The educational impact of visualization includes two com-

ponents: the enhancement of learning with visualization,
and the deployment of visualization in the classroom. Pre-
vious surveys [35] show a significant disconnect between the
intuitive belief that visualization enhances a student’s learn-
ing and the willingness and ability of instructors to deploy
visualization in their classrooms. A key impediment to the
adoption of visualizations by instructors is the time required
to learn, install, and develop visualizations and then inte-
grate them into a course. Additionally, there is also a per-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE 2003 Thessaloniki, Greece
Copyright 2003 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

ceived lack of effective visualization development tools and
software.

Whereas studies have begun to show the conditions under
which visualization enhances student learning [35], the over-
all educational impact of visualization is and will be minimal
until more instructors are induced to integrate visualization
techniques in their classes. By continuing to explore the ef-
fect of visualization on student learning, and by overcoming
the impediments to the deployment of visualization, we ex-
pect to raise the positive impact of visualization in computer
science education.

Understanding the disappointing integration of visualiza-
tion techniques in the educational process requires that we
identify the stakeholders in the instructional use of visual-
ization. We recognize four different roles associated with
visualization, similar to Price et al. [39]:

• Visualization Tool Developers develop tools for visual-
izing contents, such as algorithms, data structures or
program execution. Such tools may provide visualiza-
tions directly, such as Jeliot 2000 [32], or may be meta
tools that allow others to design desired visualizations,
for example JAWAA [2] or Animal [43].

• Visualization Designers specify the mapping from the
abstract concepts to their visual representation by cre-
ating specific visualizations – either by using visualiza-
tion meta tools or by other more direct methods.

• Instructors incorporate visualizations into their teach-
ing materials and methodology.

• Learners view and hopefully interact with the visual-
ization in one or more of the engagement levels de-
scribed in [35].

An individual may take on many of these roles. For exam-
ple, instructors will often also act as visualization designers
to generate their own specialized visualizations.

Figure 1 shows the different roles and how they can in-
teract. Each role has specific expectations of visualizations.
To gain more wide-spread usage, visualization tool develop-
ers are interested in optimizing their tool for the other three
roles. Visualization designers strive to design visualizations
that are valuable to a large audience. Instructors want to
be able to integrate visualizations into their course materi-
als to make both their teaching more satisfying and improve
student motivation and learning. Students hopefully learn
the concepts better or in a way that is “more fun” because
of the visualizations.

Visualization Designer

Vis. Tool Developer

Instructor Learner

Concept V Tool

Visualization

Figure 1: Schematic View of User Roles.

Given this analysis of the stakeholders in instructional use
of visualization, the reason for visualization’s lack of impact
begins to emerge. Visualization research has focused on the
developer and designer while research in CS education has
focused on the effectiveness of visualization to improve stu-
dent learning. In contrast, virtually no research has focused
on the needs of the instructor. As a result, support for
deploying visualizations in the classroom is nearly always
lacking.

Instructors face substantial impediments when they try
to use visualization in their teaching. Based on a survey of
SIGCSE members done by the 2002 Working Group [35],
the top five impediments (listed by percentage of responses)
are:

• 93%: time required to search for good examples

• 90%: time it takes to learn the new tools

• 90%: time it takes to develop visualizations

• 83%: lack of effective development tools

• 79%: time it takes to adapt visualizations to teaching
approach and/or course content

Clearly, the amount of time involved in learning how to
use visualization tools and in developing demonstrations and
interactive lab materials discourages the use of visualiza-
tion. Our thesis is that these impediments can be overcome
by providing high quality support materials for instructors.
The availability of good support materials will lead to in-
creased instructor satisfaction, which consequently will lead
to more widespread usage of visualization.

Working from this basic thesis, Sections 2 and 3 will offer
guidance for enhancing the effective deployment of visual-
ization tools in the classroom. Since impacting CS edu-
cation requires both widespread use and improved student
outcomes, such guidance will be broken down along these
two lines. Section 2 will focus on the instructor satisfaction
issues, and Section 3 will cover measurement of student out-
comes. Section 2 will be of particular interest to developers
and designers who seek feedback on how effective their tool
is in teaching situations.

In future years, the combined results emanating from the
evaluation techniques described will provide a more informa-
tive measure of the two aspects that combine to influence
educational impact.

2. ADDRESSING INSTRUCTOR NEEDS
The introduction has made the case that visualization

systems are perceived by instructors as being potentially
beneficial to learning outcomes and motivation. However,
such systems will see widespread use in the computer sci-
ence curriculum only if instructors can be enticed to incor-
porate them into the fabric of their courses. This implies in
turn that visualization tool developers must recognize and
address the impediments instructors face in integrating vi-
sualizations into their teaching. In Section 2.1, we rely on
the literature (see, for example, [7] and [33]) in providing a
review of these impediments.

In Section 2.2, we offer advice to visualization system and
tool designers for overcoming these impediments. Section
2.3 is devoted to techniques for making visualization soft-
ware easy to locate and obtain. Finally, Section 2.4 explores
ways of evaluating how successful a visualization system or
tool is in meeting the needs of instructors.

2.1 Impediments Faced by Instructors
Without question, the main impediment to instructor adop-

tion of visualizations for use in teaching and learning com-
puter science concepts is time. This includes time to:

• Find

• Download

• Install

• Learn

• Develop visualizations (if the tool is one that assumes
that the instructor will design his or her own visual-
izations via the tool)

• Adapt and integrate into a course

• Teach students to use visualizations

• Maintain and upgrade

Exacerbating this situation is the fact that this effort may
all be done for just a couple of lectures and might need to
be repeated for each concept to be visualized. Indeed, of the
nine top impediments cited by instructors in the survey, six
were time issues.

A second major impediment identified in the literature is
platform dependence. If visualization systems are designed
to run on a particular platform (for example, a PC with
Windows), it precludes their use on another system (for ex-
ample, a PC with Linux). Indeed, platform dependence has
many more subtle nuances that a visualization tool designer
must address (for example, version of operating system or
browser used).

A third major impediment highlighted in the references
is course integration issues. How easy is it to incorporate
a visualization into the fabric of a course and to adapt it
to the way the concepts are presented in the classroom and
in the accompanying textbooks or other class resources? If

the visualization does not integrate well into a course, it will
most likely not be used.

Notice that although the course integration issue is high-
lighted separately in the literature, it is actually captured
in the time impediment list as well, as adaptation and in-
tegration of a visualization system into a course are rightly
also identified as substantial time sinks.

2.2 Advice
Visualization systems run a wide gamut. At the two ex-

tremes are:

• Standalone, single purpose, undocumented, platform
dependent visualization systems that do not engage
the student beyond passive viewing

• Complete teaching and learning resources that incor-
porate visualizations seamlessly and become an inte-
gral resource used for an entire course

Many visualizations have fallen into the first category and
are precisely the ones that lead to instructor frustration as
measured in the survey. They should be avoided by design-
ers of such systems at all costs. Systems like this, while they
may be usable by the designer in a local course for a specific
purpose, are sure to not gain widespread use.

Hypertextbooks are an example of the other end of the
spectrum. They are envisioned to be complete teaching and
learning resources that complement—or indeed supplant—
traditional course teaching and learning resources (for ex-
ample, textbooks). Hypertextbooks may include standard
text, illustrations, pictures, video clips (for example, Quick-
Time movies), audio, and various paths through the mate-
rial based on different learning needs. Most importantly,
they would also include embedded visualization applets of
key concepts and models that engage the learner in active
learning of the subject. In this case, since the hypertext-
book is the course teaching and learning resource, and since
the hypertextbook runs in standard browsers (and likely dis-
tributed on CD or DVD), the issues of finding, downloading,
installing, adapting and integrating into a course, and main-
taining and upgrading are moot. Since the visualization ap-
plets are part of the fabric of the hypertextbook, they will
be used quite naturally by instructors and students alike.
The applets themselves must be designed so that they are
easy to learn by both instructor and students – issues we
discuss below. More can be read about hypertextbooks in
[6, 40, 41, 27].

Between these two extremes lie a variety of other possibil-
ities for visualization systems and visualization tool devel-
opment that address many of the impediments listed earlier.
It should be noted that these suggestions are not mutually
exclusive. Many can be combined to address more of the
impediments. We provide some suggestions next.

Design for platform independence. This will, obviously,
eliminate the impediment of platform dependence. Plat-
form independence is an elusive and likely unattain-
able goal in its ideal sense, but there are some choices
that are better than others. For example, designing
systems for the Web (or, more precisely, the Java Vir-
tual Machine) is one possibility. An alternative is to
ensure that a visualization system runs on all of the
major platforms likely to be available in academic set-
tings around the world. Some visualization systems

designed in this manner have come to untimely ends.
Those likely to be successful are those that are based
on widely accepted and standardized software tools
that themselves have been ported to many platforms,
such as OpenGL for graphics.

Capture larger concepts. This will ameliorate the time
impediments of searching for, downloading, installing,
and learning a new tool for each new concept. A vi-
sualization system is likely to be more widely used if
it allows for visualizations of an entire “module” of
related concepts, such as all of searching and sorting
rather than just a single algorithm or two. Further-
more, the treatment of each visualized concept will
have a similar “look and feel” that allows instructors
and students to focus on learning concepts instead of
learning how to use a tool. For example, systems like
Alice [9] provide a resource around which a course can
be designed and that can be used for most, if not all,
of a course.

Map to existing teaching and learning resources. Ex-
tending the previous observation, providing a visu-
alization package that corresponds to an existing re-
source (for example, a textbook) will make the pack-
age more appealing to users of that textbook. If done
well, the seamless integration of the book with the vi-
sualization system will also eliminate most of the time
required to adapt and integrate a visualization sys-
tem into a particular course. It has the drawback, of
course, of being primarily useful to those who choose
to use that textbook.

Design for flexibility. One can make a visualization tool
so flexible that it can easily be adapted to many differ-
ent presentation styles and course resources (for exam-
ple, textbooks). This is a worthy goal but, of course,
more difficult to achieve. For example, there are many
different implementation nuances that affect how a
particular algorithm (for example, a quicksort algo-
rithm) actually runs. Virtually every textbook pro-
vides a different version. Adapting a given visualiza-
tion of an algorithm to the precise way in which the
algorithm is presented in the textbook may be diffi-
cult or time-consuming. The discrepancy in content
may lead to confusion on the part of students. Making
adaptation easy due to system flexibility can therefore
play a key role in a successful adoption of a visualiza-
tion system.

Provide comprehensive, integrated support. To elim-
inate the frustrating time impediments of learning a
visualization resource and teaching students to use it,
a comprehensive support structure should be part of
the tool. This support should include a very care-
fully designed GUI that is novice-friendly and easily
learned. Documentation on the use of the tool as well
as tutorials illustrating its use should also be part of
the software. The entire support structure should be
refined based on feedback from the user community,
both learners and instructors.

Develop a supporting Web site. A carefully designed
Web site for a visualization system can do much to

address the time impediments that frustrate instruc-
tors. Choose a clever name for the visualization tool
that is catchy, informative, and will be easily found
in a Web search. A Web site that provides a place
to download the visualization software should include
many other things as well, such as sample lectures, ex-
ercises, and PDF documents for hard-copy instructions
that can be used by students who are learning to use
the system. Community forums and FAQs that allow
users of the tool to interact with other instructors who
are using the system also make adoption of the system
more likely. A good Web site is, in fact, such an im-
portant aspect of this discussion that we elaborate on
it in sections 2.3 and 2.4.

Register the tool in repositories. To help overcome the
impediment of time to find visualizations on the Web,
the systems should be registered in relevant reposito-
ries. Unfortunately, there is currently no single author-
itative repository for registering visualization tools.
However, there are various competing repositories or
link collections that can be accessed when searching
for visualization tools or content. These include the
Complete Collection of Algorithm Animations [7], the
forthcoming Algorithm Animation Repository [10], CI-
TIDEL [8], a prototypical repository of visualization
resources [42] as well as the “SIGCSE Education Links”
on the ACM SIGCSE Web site [1].

Publicize. It is probably safe to say that most instructors
do not actively seek visualization systems to use in
their courses. This could be because they are satisfied
with their way of teaching, they are unaware of visu-
alizations in general, or they have tried visualizations
in their courses before without success. It is manda-
tory that, in addition to simply registering their work
in a repository, visualization tool designers publicize
their work in venues such as the annual SIGCSE sym-
posium (through papers or posters), in general edu-
cational journals such as Inroads and in area-specific
journals (for example, if the tool visualizes aspects of
the theory of computing, in relevant theory journals),
and any other appropriate media.

The above advice is not meant to be comprehensive, but
rather illustrative. Once the impediments are known and
some examples of ways to surmount these impediments have
been discussed, we are certain that visualization design-
ers will become more adept at providing the community
with systems that address the issues that have slowed the
widespread use of the tools and thus promote the use of
visualizations in a positive way throughout the curriculum.

2.3 Disseminating Visualization Tools
How a visualization tool designer disseminates a system

plays an important role in how widely the system will be
used. In this section, we present a suggested outline of a
standard Web site for this purpose. The site should make it
easy for Web surfers to find the tool, learn about it, down-
load it, and install it. The site should further provide a
mechanism for obtaining feedback from those who choose
to download the system. Feedback is used to measure the
level of satisfaction of those who use it. In what follows,
the word “tool” may mean either software for designing vi-
sualizations (examples: Animal, Alice, Matrix, . . .), or a

collection of pre-prepared visualizations (examples: Quick-
Time movies or Java applets).

The portal. Acknowledging principles of good Web page
design (see, for example, [36, 37]), we recommend that
the entry page, or portal, to the Web site be attrac-
tively designed and that it provide clear information
describing:

• The name of the tool

• Author contact information

– Names

– E-mail addresses

– Institutions

• A short, clear description of the tool that will let
visitors know whether the system is of interest
(so that they can decide whether to investigate
further or abandon this particular search)

• Other pages that provide in-depth details for in-
terested visitors, including:

– A detailed description of the tool

– Documentation on the use of the tool

– Supporting materials for the instructor

– Evaluation instruments and results of prior
evaluations

– Download information

We elaborate further on the links listed above.

The description page The detailed description page should
provide:

• A comprehensive description of the tool and its
use

• The levels of targeted learners

• References to the algorithms or concepts being vi-
sualized so that instructors can determine whether
the visualization integrates with their way of teach-
ing

• Further links to any existing publications describ-
ing the tool and its use

The documentation page. The documentation page should
provide:

• Documentation on how to use and install the tool

• A statement about whether the tool is still main-
tained

• A printable tutorial for students to use when learn-
ing to use the tool

The support page. The support page should provide, where
possible and appropriate:

• Suggestions on the use of the tool

• Lecture support material (such as PowerPoint slides)

• Sample exams and quizzes

• A set of exercises for use with the tool

The evaluation page. The purpose of the evaluation page
is twofold: (1) to provide feedback to the tool designer
on the level of instructor and student satisfaction with
regard to use of the tool, and (2) to provide visitors
with results of earlier evaluations. As the tool matures,
it may even be possible to include formal studies on
the effects of the tool on student learning, but in this
section we just provide suggestions for measuring in-
structor and student satisfaction with an eye towards
making the tool more enticing.

Thus, what we suggest is that this page include links
to online statistics-gathering instruments for:

• Obtaining feedback from instructors who down-
load and use the system

• Obtaining feedback from students who use the
system

This information is so vital to the ongoing success of
the tool that we devote Section 2.4 to an elaboration
of possible instruments for these items.

The download page. This is a crucial page. This page
should not only supply an easy way to download the
tool, but it should be designed to elicit information
from those who download. The first part of this page
should be a genuine plea to the person downloading
the tool that asks for help with the project. It should
be clearly explained that this is an academic (rather
than commercial) project and that the continued suc-
cess and improvement of the tool depends crucially
on voluntary feedback from the user community. The
download process should thus have a mandatory reg-
istration procedure that requests information about:

• E-mail and other contact information

• The background of the person downloading the
software (instructor, student, or other)

• The purpose of the download (for use in a course,
independent learning, simple inquisitiveness)

• The person’s willingness to receive future e-mails
about the use of the tool (along with a clear state-
ment that contact information will not be used for
other purposes)

The information on this page should point to the eval-
uation instruments (see the next section) to provide
the person with a clear idea of the kinds of informa-
tion that might be requested in the future. It is also
always good to provide a free-response box to allow
the person to provide additional comments as well.

2.4 Evaluation
In this section, we propose sample items to include in eval-

uation instruments intended to measure instructor and stu-
dent satisfaction with the tool. The purpose is to provide
feedback to the tool designer that will allow modification
of the tool to improve instructor and student satisfaction.
These instruments will be filled out by instructors and stu-
dents after the tool has been used. Thus, the evaluator
needs to maintain contact with instructors after they have
first downloaded the system.

2.4.1 Evaluation instruments
The evaluation instruments should be extremely easy to

fill out so that as great a return as possible is obtained.
They should be administered online and be automatically
accumulated in a database belonging to the tool designer.
Requests for written answers should be carefully thought out
and not used excessively so as not to be too time-consuming
for those filling out the form.

The evaluation instrument for instructors should include
questions that obtain:

• The instructor name and contact information

• The content and level of the course in which the tool
was used

• Course enrollment

• Assumed prerequisites

Scaled questions using the traditional Likert scale with
values such as strongly disagree, disagree, neutral, agree,
strongly agree include:

• The tool is easy to obtain

• The tool is easy to install

• The tool is easy for an instructor to use

• The tool is easy to show and teach to students

• The tool is easy for students to learn

• The tool works reliably

• The tool contributes to good learning outcomes

Multiple-choice questions which don’t fit on a scale like
the one above include:

• How did you learn about the tool (private communica-
tion, from a conference, from a Web site, from a Web
search, in a book, . . .)?

• How often did you use the tool in the course (one or
two times, regularly for part of the course, regularly
throughout the course, . . .)?

• In what context did you use the tool (classroom pre-
sentation, closed lab exercises, open lab assignments,
. . .)?

• In this context, was the use of the tool (required, op-
tional)?

• How did students interact with the tool (watched, an-
swered questions, provided input or parameters, de-
signed their own visualizations, gave a presentation in
which the tool played a role, . . .)?

A student evaluation instrument would ask different ques-
tions. It is hoped that the tool designer, upon contacting
an instructor who downloaded the tool, could encourage the
instructor to require students to fill out this separate stu-
dent evaluation instrument on the tool Web site. Scaled
questions for measuring student satisfaction include:

• I enjoy using the tool

• I feel I understand the concept better when using the
tool

• The tool is easy to use

• The tool works reliably for me

Multiple-choice questions for students include:

• For any given assignment, how much time did you
spend with the tool on average (about 5 minutes, about
10 minutes, about 15 minutes, about 30 minutes, about
an hour, more than an hour, . . .)?

• How many exercises or assignments did you do with
this tool?

• How did you use the tool (watched in class, used in
lab, used in university work area, used on my own
computer, . . .)

The evaluation instrument, whether for instructor or stu-
dent, should always provide an open field for additional com-
ments at the end. Further, since an instructor may use
visualizations in different ways in different courses, the in-
structor should be encouraged to complete an evaluation for
each course. We assume that instructors who were willing
to fill out the instruments would not mind being contacted
again if clarification of responses is needed.

3. EVALUATION OF LEARNER OUTCOMES
Ultimately, the application of visualization techniques in

the teaching and learning process will become widespread
only if instructors have concrete evidence that student per-
formance improves and/or that student interest and moti-
vation in the subject are enhanced when visualizations are
used.

Since we cannot directly measure the learning process,
the focus of this section is on measuring learning outcomes
and how student attitudes are affected by the use of visu-
alization techniques. We provide suggestions for evaluating
student learning outcomes and attitudes when visualization
tools are employed. We also offer guidance for the visualiza-
tion tool designer, the visualization designer, and instructors
who desire to study the effects of using visualization tools
in their courses. Throughout, we attempt to describe ex-
periments that support the selection of tools for everyday
teaching situations (hereafter TS) as well as experiments
that are designed for more formal education research pur-
poses (hereafter RP).

3.1 Different forms of evaluation
Summative evaluations are those that occur after stu-

dents’ use of the tool is completed for the study in ques-
tion. Formative evaluations occur during the study and are
meant to determine whether project-related activities are
being met as the study progresses.

3.1.1 Formative evaluations
Formative evaluations typically involve qualitative assess-

ment. For more details about formative evaluations, see [17,
16]. This section discusses formative evaluations in general,
but focuses on those formative evaluations we believe are
particularly well-suited for visualization.

1. Student attention to a visualization

By studying in depth how the student uses the specific
visualization, we can determine if the student is using
it in ways the instructor intended. Possible implemen-
tation ideas include observations (where the student is
watched, either directly or through a one-way mirror,
performing a specified task) and eye-tracking cameras
(where it can be determined on which parts of the vi-
sualization tool the student is focusing).

2. Time-on-task

This evaluation may be thought of as both formative
and summative. The purpose is to keep track of how
long the student spends working with the visualization
tool in an assignment. The simplest approach is to
have the tool record the time at startup and when it is
shut down. A more detailed implementation involves
the generation of a log by the visualization tool of all
student interactions with the tool. While generating
a log is more difficult to implement (and analyze), it
does allow for a more detailed analysis of interaction of
the student with the tool. This approach may be used
in a formative manner. For example, a log would allow
the instructor to see if the student is having difficul-
ties using the tool. Such a formative evaluation allows
the instructor to adjust lecture materials, or perhaps
provide a modified tutorial on the visualization tool’s
use.

This is especially true in the case of virtual learning
environments, where the learner may lack direct feed-
back. Here monitoring the overall student performance
in a time-on-task sense is a bit more easily adopted.
The feature was recently incorporated, for example,
into the electronic text book illustrated in [27].

Software that allows an instructor to watch the screen
of a student at a remote workstation may also be used
when the instructor wants to focus on one particular
student’s interaction with the visualization tool.

3. Intermediate student feedback

Anonymous surveys may be employed during the ac-
tual usage of the visualization tool in a class to get
students’ impressions of the tool. Students may be
asked to solve a problem to gauge their comprehen-
sion, how much time they are spending using the tool,
how much time they are spending on the course with-
out involving the tool, their opinion of the materials,
the lecture, the visualization tool itself, and so forth.
One way to improve the outcome of the survey is to
compare the survey data to actual facts known from
the tool (from a log automatically generated by the vi-
sualization tool, as discussed in item 2 above). Thus,
the impression expressed by the students can be “ver-
ified” by comparing their opinions with actual test re-
sults of the performance. These are not absolute values
but merely comparable with each other, for example
to determine the learner’s opinion on the tools versus
other resources used in the course.

Another approach of interest in obtaining intermediate
student feedback is the use of Classroom Assessment
Techniques (CATs) [45]. While not directly related
to the use of visualization tools in class per se, CATs

appear to be a promising mechanism for obtaining on-
going student feedback, as well as helping to contex-
tualize course content for the students.

4. Peer reviews of curricular materials

Peer review is a widely accepted technique for exam-
ining the content, construct, and criterion validity of
instructional materials [3]. This is particularly valu-
able when the instructors’ materials are evaluated by
the visualization tool creator, and by other visualiza-
tion experts in the field, as well as by “expert teachers”
in the specific content area where the visualization is
being used. The instructor may receive valuable feed-
back ensuring that proposed use of the visualization
tool in class is pedagogically sound.

5. Student interviews

Interviewing a random subset of the students who have
used the specific visualization tool and its associated
materials can provide valuable feedback. By focusing
on the students’ experiences with the tool, the instruc-
tor can gain a detailed understanding of the students’
comprehension, student attitudes towards the visual-
ization tool and the subject being studied, students’
comfort with using the tool, students’ suggestion for
tool/lecture improvements, and so forth. Interviewing
may be done in an individual and/or a small group
format.

3.1.2 Summative evaluations
Summative evaluations summarize the effectiveness and/or

results of the study after students have completed their use
of the tool. Generally quantitative methods are used in sum-
mative evaluations. More details about summative evalua-
tions may be found in [16]. Like the formative evaluation
subsection, the focus here is on those summative evaluations
most applicable to visualization.

1. Analysis of learner understanding using mental models

Evaluation of student outcomes using mental models
is an analysis technique used primarily in formal ed-
ucation research studies. Since we have no analysis
method based on mental models for visualizations, we
describe an analysis method that has been developed
for mental models used by programmers. It would be
important to try to find out what is good comprehen-
sion of algorithms (instead of programming in general).
By knowing this we would have a solid basis for the
evaluation of learning outcomes. One possibility for
determining the quality of algorithm comprehension is
to use similar study techniques as Pennington [38] did
with programming.

Pennington [38] studied comprehension strategies in
programming. Good [18] continued Pennington’s work
and developed a classification for analyzing novice pro-
gram comprehension. Her classification has been ap-
plied by Good and Brna [19] and Sajaniemi and Kuit-
tinen [44]. These studies describe the method and the
procedure for analyzing the mental models of novice
programmers. Thus, they can be used as examples
how to use mental models for evaluating learning out-
comes.

Pennington had 40 expert programmers that were the
top and bottom quartile comprehenders (20 each) from
her previous study (see the details in [38]). The pro-
grammers had to make a modification to a program
normally maintained by another programmer. After
studying the program they were asked to write a sum-
mary of the program, respond to a set of comprehen-
sion questions and explain their answers. Then they
were asked to make the modification and, after that, to
summarize the program and respond to another set of
comprehension questions. Answers to the questions as
well as the program summaries were the basis for the
measurement of programmers’ comprehension which
then could be classified as good or poor comprehen-
sion based on the subjects’ quartile.

The basic idea of Good’s analysis method is that com-
prehension can be studied using program summaries
which are analyzed using two different methods: in-
formation type analysis and object description anal-
ysis. According to Good and Brna [19], the infor-
mation types classification is used to code summary
statements on the basis of the information types they
contain. The types include eleven categories: func-
tion, actions, operations, state-high, state-low, data,
control, elaborate, meta, unclear, and incomplete. For
a definition of these terms, refer to [19]. The object
classification looks at the way in which objects are de-
scribed. This classification has seven categories: pro-
gram only, program, program – real-world, program –
domain, domain, indirect reference, and unclear.

The information types described above help to divide
information into low level information and high level
information. High level types are function, action,
state-high, and data, while low level types include op-
eration, state-low, and control. Elaborate, meta, and
unclear cannot be classified as either high or low level
types.

There are two ways to use these analytical methods:
students can be asked to write program summaries or
they can be asked to answer very carefully designed
questions. Program summaries are difficult to analyze
and therefore these kinds of tasks may not be suitable
in TS. For RP, the analysis method is very useful for
finding what kind of effect different teaching methods
may have on students’ mental models. Asking ques-
tions is more suitable for TS because the questions
can be designed to make the analysis of the answers
easy.

Next we will discuss the design of the questions. Both
high and low levels of information types should be
used when asking questions, although the high level
questions measure deeper understanding and therefore
should be more valuable. It is possible that a student
whose comprehension is on a high level cannot cor-
rectly answer the questions on a low level. This is
not unusual and not necessarily bad, since high level
comprehension replaces low level comprehension when
learning is deep enough [38].

Object descriptions enable us to ask three kinds of
questions: questions about the program code itself,
questions about the domain of the program, and cross-
reference questions in which the student needs to com-

bine both the program code and the domain. Those
students who can answer the cross-reference questions
have a deep comprehension of the program while the
others have only a surface level comprehension (that
is, they probably recognize the code and/or the do-
main but may not understand the connection between
them). From the evaluation point of view the best sit-
uation is when a student is able to answer all three
kinds of questions. The next best is that a student
can answer cross-reference questions (deep level) even
though program or domain questions are not answered.

2. Analysis of learner understanding using levels in Bloom’s
taxonomy

Bloom’s taxonomy [5] is another common tool used
in formal education research studies. The taxonomy
offers a way to systematically design test tasks for
analyzing learner understanding. Six comprehension
levels are provided, each of which characterizes an as-
pect of the learning process. The idea is to reduce the
qualitative improvement in learning to discrete levels
of comprehension and moreover, to measurable scores.
The six comprehension levels are knowledge, compre-
hension, application, analysis, synthesis, and evalua-
tion. The experiment can be designed to measure the
learner outcome in each of these levels starting from
the knowledge and ending up with evaluation.

The 2002 Working Group report [35] provides more
detailed examples of the different Bloom levels. The
context used in that report is a course in data struc-
tures and algorithms.

3. Pre- and post-content tests

To help determine content mastery where a visualiza-
tion tool is used, pre- and post-tests are particularly
effective. Typically, the same test is used for both
tests. The purpose of the pre-test is to determine the
level of prior knowledge the student has. It is of ut-
most importance to ask the “right” questions. If in
the case of a study designed for TS it is not possible
to use identical exams for the pre- and post-tests, the
questions on the pre-test may be a proper subset of
those on the post-test.

4. Attitude survey

Attitude surveys are generally given before and after
students’ use of a visualization tool. They are used to
determine changes in students’ attitudes, confidence,
motivation, and so forth as a result of their experi-
ence with the visualization. The two most widely ac-
cepted surveys for determining student attitudes to-
wards computers and computer science, Francis [15],
and Loyd and Gressard [33], are somewhat dated. These
survey instruments are most appropriate for use in in-
troductory classes. There is certainly a need for the
development of a newer, more relevant, survey instru-
ment to be tested and validated. Instructors of upper-
level courses will need to create their own survey in-
struments. The difficulty is that the survey instrument
itself will not be experimentally validated. A good
attitude survey provides valuable feedback about the
students’ impression of the visualization tool, and is
typically administered as a pre- and post-test.

5. Retention and attraction

Particularly for visualization tools used in lower-level
courses, it is interesting to monitor the change in stu-
dent retention in the computer science major and mi-
nor. For those tools that impact courses for non-
majors, it is important to examine whether or not the
use of the visualization helps to encourage students to
become computer science majors or minors. Retention
and attraction statistics are often combined with stu-
dent attitude surveys to help gauge student reaction
to their experiences with the visualization tool.

6. Grades

Student grades are a measure of student success in
a course. While they are generally not as useful as
pre- and post-tests to gauge student content mastery,
grades are easy to collect and analyze.

7. Time-on-task

While described in the formative subsection, time-on-
task may also be used as a summative measure. As
an example, consider the following. A student’s use
of a visualization tool as part of an assignment can be
timed. For example, if a student does an assignment in
an environment where no clock is available, the student
can be asked how much time elapsed while working on
the assignment. If the student thinks that a smaller
amount of time passed than actually did, this indicates
that student’s interest in using the visualization tool.
See [21] or [4] for more details.

3.1.3 Which of these evaluation methods should be
used?

This is, in general, a difficult question to answer. The
first question to answer is whether the particular evaluation
of a study is primarily for teaching or research purposes.
A research study typically requires significantly more as-
sessment than a study primarily interested in improving a
teaching situation. Additionally, the specific visualization
tool and its associated visualizations are key determinants
of the specific evaluation strategies to be used. For several
sample studies, see the case studies described in Section 4
of this paper.

3.2 Covariant factors
If we are going to set up a study where we compare differ-

ent tools and assignments, we should recognize that learning
style may affect the results. Consider as a trivial example a
study with only two students, A and B, in which the results
of two assignments given to both are compared. Suppose
that in the first assignment, A gets grade of 1 out of 5 and
B gets grade of 5 out of 5. In the second assignment, sup-
pose A gets 5 out of 5 and B gets 1 out of 5. Obviously, the
average results are the same, and we could claim that we
found no difference in results for the assignments. Suppose,
however, that A is a highly verbal and B a highly visual
learner and that the assignments were visual and verbal, re-
spectively. By considering the learning style as a covariant
factor in the study, we would observe a major change in
students’ performance.

Several covariant factors are listed in last year’s working
group report [35]. Here we discuss in detail some factors as
they pertain to evaluation.

1. Learning styles

Students have different styles of taking in and process-
ing information. Thus, some students are more com-
fortable with reading text while others prefer grasp-
ing information from figures and visualizations. Other
students like to process information actively through
experimentation and observations while others prefer
processing information in their minds through intu-
ition and reflection.

It is important that we as teachers recognize these dif-
ferences, since they very much affect how our students
feel about studying and how well they succeed at var-
ious activities and tasks we design. A conflict often
occurring in undergraduate education is that teach-
ers explain the topic deductively, first concentrating
on principles and theories, and then proceed to ex-
plain how these theories and principles are applied to
analyzing phenomena and solving practical problems
[12]. Most undergraduate students, however, seem to
process information inductively, learning details first
and then proceeding to understand principles. As an
example, in introductory programming courses, most
students have difficulties with syntax and semantic de-
tails and find it hard to understand the relevant prin-
ciples in the background, even if they are explicitly
explained.

Differences in learning styles can be expressed with
learning models, which are general frameworks for char-
acterizing different aspects of learners’ activities. Ex-
amples of such models include Kolb’s experiential learn-
ing [23] and the Felder-Silverman learning model [13].
In the following, we discuss the latter model in some
more detail since it seems particularly suited to science
education.

Felder and Silverman identify four dimensions of stu-
dent behaviors, each of which has two extremes.

Sensory vs. Intuitive – what type of information does
the student preferentially perceive. Sensing learners
prefer collecting information by observation. They of-
ten like facts, working with details, and memorizing
data. They also prefer a practical approach, experi-
mentation and solving problem using standard meth-
ods. Intuitive learners like conceptual thinking, such
as theories and principles, and grasping new concepts.

Visual vs. Verbal – how is the sensory information
most effectively perceived. Visual learners better adopt
visual information and verbal learners prefer informa-
tion in written or spoken form.

Active vs. Reflective – how does the student prefer to
process information. Active learners learn by trying
things out and prefer interaction. Reflective learners
prefer examining and manipulating information intro-
spectively.

Sequential vs. Global – how does the student progress
towards understanding. Sequential learners like to pro-
ceed linearly with small steps using the given instruc-
tions. Global learners like to get a holistic view of
acquired knowledge.

Initially, Felder and Silverman also had a dimension
inductive vs. deductive learners, but they decided to

drop it since the model should not promote the exist-
ing conflict between deductive teachers and inductive
learners [12].

Obviously, all these axes are continuous, that is, each
student lies somewhere between the extremes. Their
orientation can be evaluated by exposing the student
to a simple questionnaire, such as presented in [22].
However, we note that orientation may change over
time and may depend on the context in which students
are working.

The general goal is that our students should extend
their skills of adopting and processing information with-
in all four axes. To accomplish this goal, the teacher
may push the change by setting up activities that train
the weaker side of student’s behavior.

Next we present a few examples of assignments that
demonstrate how to request different types of activities
in this context. The examples are presented in more
detail in [30].

Consider an assignment that requests the user to trace
how various binary tree traversal algorithms work, that
is, list the order in which the nodes are traversed when
a specific traversal algorithm is applied. A visual form
of this exercise could include a picture of a binary tree,
allowing the student to click the nodes on the screen in
the appropriate order. Alternatively, the assignment
could be given in verbal order by giving the tree as an
adjacency list and asking the student to write the keys
in the nodes as a list according to their traversal order.

A sensing learner could solve the exercise by applying
a simple mnemonic such that a line is drawn around
the tree starting from the left side of the root and list-
ing each key when the corresponding node is passed
from the left (preorder), below (inorder) or right (pos-
torder). An intuitive form of the exercise is that we
give the tree and the pseudo code of the traversal al-
gorithm and ask the student to list the nodes in the
order the given algorithm visits them.

2. Student background surveys

Introductory student surveys are useful for obtaining
background data (such as previous classes taken, pre-
vious experience, mathematics background, and gen-
eral entrance exam scores) as well as information such
as why they registered for this section of the course.
This data is particularly useful in helping to deter-
mine whether the student’s background is a factor in
the student’s success either in the particular course, or
with the particular visualization tool.

3. Time-on-task

Time-on-task has already been discussed in the for-
mative evaluation subsection. We have also included
it as a covariant factor because it might be expected
that increased time spent using visualization may be
a factor in performance.

3.3 Testing with human subjects
We wish to issue a note of warning for those instructors

planning to run studies in their classes. In many countries,
approval of “human subjects review boards” is required for

all studies involving students. Written consent from stu-
dents involved in studies will also often be required. The
case studies in Section 4 provide examples of successful ap-
plications that others have used in broaching this sensitive
area within their institutions. Such applications may serve
as useful templates for instructors to use for gaining “human
subjects” approval at their own schools.

4. CASE STUDIES
Many members of the working group have been and are

involved in studies that demonstrate the efficacy of the guid-
ance given in Sections 2 and 3. These are collected online
and provide concrete realizations of the principles that are
described in this report. The letter legends used indicate
whether the study is completed and published (CP), com-
pleted but not yet published (CNP), in progress (IP), ori-
ented toward measuring instructor satisfaction (IS), oriented
toward measuring student outcomes with respect to every-
day teaching situations (SO-TS) or more formal education
research (SO-RP).

Presently, this list includes the following:

• Stephen Cooper and Wanda Dann – This study ex-
amines the use of program visualization for introduc-
ing objects and their behaviors using Alice [11], a 3D
program visualization environment. Statistical data
is collected to show evidence of student performance
and retention in CS1 for test and control groups. Early
summaries may be found in [9]. CNP, SO-TS, SO-RP.

• Rudolf Fleischer – This study will measure the effec-
tiveness of visualizations in the context of a second-
year course on the theory of computation (finite au-
tomata, context-free grammars, Turing machines) [14].
The study will be done in Spring 2004 at the Hong
Kong University of Science and Technology. IP, SO-
TS.

• Boris Koldehofe – By using the framework presented in
this working group report and considering the results
of a previous study [25], a new study of instructor’s sat-
isfaction with LYDIAN [24], a simulation-visualization
environment for learning and teaching distributed al-
gorithms, is planned. The purpose is to evaluate which
features of LYDIAN contribute to instructor satisfac-
tion and the teachers’ performance when integrating
LYDIAN in their course. The study also tries to deter-
mine the factors which may prevent instructors from
actually using LYDIAN after they download the tool.
IP, IS.

• Ari Korhonen and Lauri Malmi – Intervention study
with automatic assessment – the paper [28] presents
the results of the large scale (N=550 students) inter-
vention study carried out in a virtual learning envi-
ronment based on the TRAKLA system [26]. The sys-
tem provides individually tailored exercises that the
learner solves on the Web using an algorithm simu-
lation [29]. The learner receives immediate feedback
around the clock on his or her performance. The sys-
tem has features that traditional instruction cannot
provide. Thus, the study was pursued to research the
quality, advantages and limitations of this novel ap-
proach. One of the conclusions was that the learning

environment was as good as if they were solving the
same exercises in class room with human tutors giving
the feedback. CP, SO-RP.

• Ari Korhonen and Lauri Malmi – This study [34] presents
some experiences and observations made during 10
years of using the TRAKLA system [26]. It is in-
evitable that learners perform better when they are
allowed to resubmit their work. However, this is not
the whole story; it is also important to organize the
course so that the skills and challenges of the learner
coincide. Moreover, the grading policy seems to have a
major impact on performance. The study summarizes
the results and points out changes in learner perfor-
mance under the several changes the course has gone
through during the time period. CP, SO-TS.

• Ari Korhonen and Lauri Malmi – This study focuses
on the effect of different learner engagement levels on
learning. The ITiCSE 2002 working group report [35]
on visualization prepared a taxonomy of engagement
in order to identify and differentiate various types of
actions the learners may perform while using visual-
izations. The plan for this study will appear at the
Web site of the Computer Science Education Research
Group (http://www.cs.hut.fi/Research/COMPSER/)
at Helsinki University of Technology. IP, SO-TS.

• Marja Kuittinen and Jorma Sajaniemi – This study
[31, 44] evaluates the use of variable roles and role-
based animation in teaching introductory programming.
The role concept captures tacit expert knowledge in a
form that can be taught to novices. Details about
the project and evaluation studies can be found at
http://cs.joensuu.fi/~saja/var_roles/. CP, SO-
RP.

• Charles Leska – This study examines the impact on
student performance of using visualization on a unit
in a computer literacy course. The unit focuses on the
binary representation of data and the interplay of the
processor components during the fetch-execution cy-
cle. Details about the study can be found at http://

faculty.rmc.edu/cleska/public_html/algvizstudy.

htm. IP, SO-TS.

• Scott Grissom, Myles McNally, and Tom Naps – This
study compares the effect of three different learner en-
gagement levels with visualization in a course mod-
ule on introductory sorting algorithms. Results of the
study have been published in [20]. CP, SO-TS.

• Jarmo Rantakokko – This study evaluates the effects
of using algorithm visualization in parallel computing.
The study focuses on student learning outcomes. De-
tails about the project and this particular study can be
found at http://user.it.uu.se/~jarmo/hgur.html.
IP, SO-RP.

The working group’s URL at http://www.algoanim.net

contains updated information on these studies and others
that have been added since the preparation of this report.

5. CONCLUSION
This report has been based on the premise that visual-

ization can significantly impact CS education only if two
goals are met – widespread use and positive student out-
comes. Visualization designers have typically not researched
the factors that would influence instructor satisfaction, and
Section 2 of this report has offered guidance for beginning
this process. Section 3 has provided an overview of student
outcome measurement techniques. This overview includes
approaches that can be used for informal everyday teaching
situations and for more formal education research studies.
We hope this will be of help to both visualization tool devel-
opers and visualization designers who may not be specialists
in doing such evaluation but who nonetheless are required
to validate their product by demonstrating its effectiveness.

6. ADDITIONAL AUTHORS
Additional authors: Jay Anderson, Franklin & Marshall

College, email: jay.anderson@fandm.edu; Stephen Cooper,
St. Joseph’s University, email: scooper@sju.edu; Wanda
Dann, Ithaca College, email: wpdann@ithaca.edu; Rudolf
Fleischer, Hong Kong U Sc. & Techn., email: rudolf@cs.

ust.hk; Boris Koldehofe, Chalmers U Technology, Sweden,
email: khofer@cs.chalmers.se; Ari Korhonen, Helsinki U
Techn., Finland, email: archie@cs.hut.fi; Marja Kuitti-
nen, Joensuu University, Finland, email: marja@cs.joensuu.
fi; Charles Leska, Randolph-Macon College, email: cleska@
rmc.edu; Lauri Malmi, Helsinki U Tech., Finland, email:
lma@cs.hut.fi; Myles McNally, Alma College, email:
mcnally@alma.edu; Jarmo Rantakokko, Uppsala U, Sweden,
email: jarmo@tdb.uu.se, Rockford J. Ross, Montana State
University, email: ross@coe.montana.edu.

7. REFERENCES
[1] ACM Special Interest Group on Computer Science

Education. SIGCSE Education Links. Available online
at http://www.sigcse.org/topics, 2003.

[2] Akingbade, A., Finley, T., Jackson, D., Patel, P., and
Rodger, S. H. JAWAA: Easy Web-Based Animation
from CS 0 to Advanced CS Courses. In Proceedings of
the 34th ACM SIGCSE Technical Symposium on
Computer Science Education (SIGCSE 2003), Reno,
Nevada (2003), ACM Press, New York, pp. 162–166.

[3] American Educational Research Association,
American Psychological Association, and National
Council on Measurement in Education. Standards for
Educational and Psychological Testing. American
Educational Research Association, Washington, D.C.,
USA, 1999.

[4] Bederson, B. Interfaces for Staying in the Flow.
Keynote at IEEE Human-Centric Computing
Languages and Environments. Available online at
http://www.cs.umd.edu/~bederson/talks/

HCCKeynote-Sept2002.ppt (seen July 14, 2003).

[5] Bloom, B. S., and Krathwohl, D. R. Taxonomy of
Educational Objectives; the Classification of
Educational Goals, Handbook I: Cognitive Domain.
Addison-Wesley, 1956.

[6] Boroni, C. M., Goosey, F. W., Grinder, M. T., and
Ross, R. J. Engaging Students with Active Learning
Resources: Hypertextbooks for the Web. In
Proceedings of the 32nd ACM SIGCSE Technical

Symposium on Computer Science Education (SIGCSE
2001), Charlotte, North Carolina (2001), ACM Press,
New York, pp. 65–69.

[7] Brummund, P. The Complete Collection of Algorithm
Animations, 1998. Available online at
http://cs.hope.edu/~alganim/ccaa/ (see July 14,
2003).

[8] CITIDEL - Computing and Information Technology
Interactive Digital Educational Library. Available
online at www.citidel.org (seen July 14, 2003).

[9] Cooper, S., Dann, W., and Pausch, R. Introduction to
OO: Teaching Objects-First in Introductory
Computer Science. In Proceedings of the 34th ACM
SIGCSE Technical Symposium on Computer Science
Education (SIGCSE 2003), Reno, Nevada (2003),
ACM Press, New York, pp. 191–195.

[10] Crescenzi, P., Faltin, N., Fleischer, R., Hundhausen,
C., Näher, S., Rößling, G., Stasko, J., and Sutinen, E.
The Algorithm Animation Repository. Proceedings of
the Second International Program Visualization
Workshop, HornstrupCentret, Denmark (2002), 14–16.
Available online at
http://www.daimi.au.dk/PB/567/PB-567.pdf.

[11] Dann, W., Cooper, S., and Pausch, R. Making the
Connection: Programming With Animated Small
World. In Proceedings of the 5th Annual ACM
SIGCSE/SIGCUE Conference on Innovation and
Technology in Computer Science Education (ITiCSE
2000), Helsinki, Finland (2000), ACM Press, New
York, pp. 41–44.

[12] Felder, R. M. Author’s preface – June 2002.
http://www2.ncsu.edu/unity/lockers/users/f/

felder/public/Papers/LS-1988%.pdf (seen July 14,
2003), 2002.

[13] Felder, R. M., and Silverman, L. K. Learning Styles
and Teaching Styles in Engineering Education.
Engineering Education 78, 7 (1988), 674–681.

[14] Fleischer, R. COMP 272: Theory of Computation —
A proposed study on the learning effectiveness of
visualizations, 2003. Manuscript.

[15] Francis, L. Attitude towards Computers Scale.
Computers in Education 20, 3 (1993), 251–255.

[16] Frechtling, J. The 2002 User Friendly Handbook for
Project Evaluation. National Science Foundation,
2002.

[17] Frechtling, J., and Sharp, L. User-Friendly Handbook
for Project Evaluation. National Science Foundation,
1997.

[18] Good, J. Programming Paradigms, Information Types
and Graphical Representations: Empirical
Investigations of Novice Program Comprehension.
PhD thesis, University of Edinburgh, 1999.

[19] Good, J., and Brna, P. Toward Authentic Measures of
Program Comprehension. In Proceedings of the
Fifteenth Annual Workshop of the Psychology of
Programming Interest Group (PPIG 2003) (2003),
pp. 29–49.

[20] Grissom, S., McNally, M., and Naps, T. L. Algorithm
Visualization in Computer Science Education:
Comparing Levels of Student Engagement. In
Proceedings of the First ACM Symposium on Software
Visualization, San Diego, California (2003), ACM

Press, New York, pp. 87–94.

[21] Jenkins, J., and Visser, G. Making Learning Fun.
Available online at
http://www.imaginal.nl/learningFun.htm (seen
July 14, 2003).

[22] Keirsey, D. M. Keirsey Temperament and Character
Web Site. Available online at WWW:
http://www.keirsey.com (seen July 14, 2003), 2002.

[23] Kolb, D. A., Ed. Experiential Learning: Experience as
the Source of Learning and Development.
Prentice-Hall Inc, New Jersey, USA, 1984.

[24] Koldehofe, B., Papatriantafilou, M., and Tsigas, P.
LYDIAN, An Extensible Educational Animation
Environment for Distributed Algorithms. In
Proceedings of the 4th Annual ACM
SIGCSE/SIGCUE Conference on Innovation and
Technology in Computer Science Education (ITiCSE
2000) (July 2000), ACM Press, New York, p. 189.

[25] Koldehofe, B., Papatriantafilou, M., and Tsigas, P.
Integrating a Simulation-Visualization Environment in
a Basic Distributed Systems Course: A Case Study
Using LYDIAN. In Proceedings of the 8th Annual
ACM SIGCSE/SIGCUE Conference on Innovation
and Technology in Computer Science Education
(ITiCSE 2003) (June 2002), p. 226.

[26] Korhonen, A., and Malmi, L. Algorithm Simulation
with Automatic Assessment. In Proceedings of the 5th

Annual ACM SIGCSE/SIGCUE Conference on
Innovation and Technology in Computer Science
Education (ITiCSE 2000) (Helsinki, Finland, 2000),
ACM, pp. 160–163.

[27] Korhonen, A., Malmi, L., Mård, P., Salonen, H., and
Silvasti, P. Electronic course material on Data
structures and Algorithms. In Proceedings of the
Second Annual Finnish / Baltic Sea Conference on
Computer Science Education (October 2002),
pp. 16–20.

[28] Korhonen, A., Malmi, L., Myllyselkä, P., and Scheinin,
P. Does it Make a Difference if Students Exercise on
the Web or in the Classroom? In Proceedings of the
7th Annual ACM SIGCSE/SIGCUE Conference on
Innovation and Technology in Computer Science
Education (ITiCSE 2002) (Århus, Denmark, 2002),
ACM Press, New York, pp. 121–124.

[29] Korhonen, A., Malmi, L., Nikander, J., and Silvasti, P.
Algorithm Simulation – A Novel Way to Specify
Algorithm Animations. In Proceedings of the Second
International Program Visualization Workshop,
HornstrupCentret, Denmark (2002), pp. 28–36.
Available online at
http://www.daimi.au.dk/PB/567/PB-567.pdf.

[30] Korhonen, A., Malmi, L., Nikander, J., and Tenhunen,
P. Interaction and Feedback in Automatically
Assessed Algorithm Simulation Exercises. Accepted for
publication in Journal of Information Technology
Education (2003).

[31] Kuittinen, M., and Sajaniemi, J. First Results of An
Experiment on Using Roles of Variables in Teaching.
In EASE & PPIG 2003, Papers of the Joint
Conference at Keele University (2003), pp. 347–357.

[32] Levy, R. B.-B., Ben-Ari, M., and Uronen, P. A. An
Extended Experiment with Jeliot 2000. In Proceedings

of the First International Program Visualization
Workshop, Porvoo, Finland (July 2001), University of
Joensuu Press, Finland, pp. 131–140.

[33] Loyd, B. H., and Gressard, C. P. Computer Attitude
Scale. Journal of Computing Research 15, 3 (1996),
241–259.

[34] Malmi, L., Korhonen, A., and Saikkonen, R.
Experiences in Automatic Assessment on Mass
Courses and Issues for Designing Virtual Courses. In
Proceedings of the 7th Annual ACM SIGCSE/SIGCUE
Conference on Innovation and Technology in
Computer Science Education (ITiCSE 2002) (Århus,
Denmark, 2002), ACM Press, New York, pp. 55–59.

[35] Naps, T. L., Rößling, G., Almstrum, V., Dann, W.,
Fleischer, R., Hundhausen, C., Korhonen, A., Malmi,
L., McNally, M., Rodger, S., and Velázquez-Iturbide,
J. Á. Exploring the Role of Visualization and
Engagement in Computer Science Education. ACM
SIGCSE Bulletin 35, 2 (June 2003), 131–152.

[36] Nielsen, J. Designing Web Usability. The Practice of
Simplicity. New Riders Publishing, 1999.

[37] Norman, D. ”Top Ten Mistakes” Revisited Three
Years Later. Available online at
http://www.useit.com/alertbox/990502.html (seen
July 14, 2003), May 1999.

[38] Pennington, N. Comprehension Strategies in
Programming. In Empirical Studies of Programmers:
Second Workshop (1987), G. M. Olson, S. Sheppard,
and E. Soloway, Eds., Ablex Publishing Company,
pp. 100–113.

[39] Price, B., Baecker, R., and Small, I. An Introduction
to Software Visualization. In Software Visualization,
J. Stasko, J. Domingue, M. H. Brown, and B. A.
Price, Eds. MIT Press, 1998, ch. 1, pp. 3–27.

[40] Ross, R. J. Hypertextbooks for the Web. In
Proceedings of the First International Program
Visualization Workshop, Porvoo, Finland (July 2001),
University of Joensuu Press, Finland, pp. 221–233.

[41] Ross, R. J., and Grinder, M. T. Hypertextbooks:
Animated, Active Learning, Comprehensive Teaching
and Learning Resources for the Web. In Software
Visualization (2002), S. Diehl, Ed., no. 2269 in Lecture
Notes in Computer Science, Springer, pp. 269–284.

[42] Rößling, G. Algorithm Animation Repository.
Available online at
http://www.animal.ahrgr.de/en/AnimList.html

(seen July 14, 2003), 2001.

[43] Rößling, G., and Freisleben, B. Animal: A System for
Supporting Multiple Roles in Algorithm Animation.
Journal of Visual Languages and Computing 13, 2
(2002), 341–354.

[44] Sajaniemi, J., and Kuittinen, M. An Experiment on
Using Roles of Variables in Teaching Introductory
Programming. Submitted to Empirical Software
Engineering (2003).

[45] Schwarm, S., and VanDeGrift, T. Making
Connections: Using Classroom Assessment to Elicit
Students’ Prior Knowledge and Construction of
Concepts. In Proceedings of the 8th Annual ACM
SIGCSE/SIGCUE Conference on Innovation and
Technology in Computer Science Education (ITiCSE
2003) (2003), ACM Press, New York, pp. 65–69.

