
Development of XML-based Tools to Support User Interaction
with Algorithm Visualizations

Thomas L. Naps
Department of Computer Science
University of Wisconsin Oshkosh

Oshkosh, WI 54901
naps@uwosh.edu

Guido Rößling
Department of Computer Science

Darmstadt University of Technology
D-64289 Darmstadt, Germany

roessling@acm.org

Abstract

An increasing body of evidence suggests algorithm visual-
ization (AV) is effective only in conjunction with other tech-
niques that force a degree of user interaction beyond the
mere “watching” of an algorithm.

One of the difficulties faced by instructors who design visu-
alizations to use in their teaching lies in the time required
to develop materials that employ these supplementary tech-
niques. The focus of this working group will be to begin
a focused and coordinated effort toward the development of
tools designed to remedy this problem. In particular, such
tools will be based on a set of XML specifications whose cre-
ation will be one of the primary goals of the working group.

1 Background

Algorithm visualization (AV) technology can be used to
graphically illustrate various concepts in computer science.
However, the instructional effectiveness of using such visu-
alization remains in doubt. A meta-analysis of 21 experien-
tial evaluations of AV systems suggests that a higher level of
learner involvement can improve learning outcomes [3].

In an attempt to formalize some of these results, the 2002
ITiCSE working group on “Improving the Educational Im-
pact of Algorithm Visualization” [6] developed a framework
for conducting experimental studies of visualization effec-
tiveness. Central to this framework was a taxonomy of
learner engagement with the visualization technology. This
taxonomy defines six different forms of learner engagement
with visualization technology:

1. No viewing (no visualization technology is used at all)

2. Viewing

3. Responding

4. Changing

5. Constructing

6. Presenting

“Viewing” can be considered the core form of engagement,
since all other forms of engagement with visualization tech-
nology fundamentally entail some kind of viewing. Viewing
can also include pace or direction control, and may use mul-
tiple windows or embedded explanations. Viewing by itself
is the most passive of the forms of engagement. The remain-
ing four categories all include viewing, but then go beyond
it in what is expected of the learner.

The third category in the engagement taxonomy is “Re-
sponding”. The key activity in this category is answering
questions concerning the visualization presented by the sys-
tem. For example, learners might be asked:

• “What will the next frame in this visualization look like?”

• “What source code does this visualization represent?”

• “Is the algorithm shown in this visualization free of bugs?”

“Changing” entails modifying the visualization. The most
common example is allowing the learner to change the input
of the algorithm under study in order to explore the algo-
rithm’s behavior in different cases.

“Constructing” requires learners to construct their own visu-
alizations of the algorithms under study. The most common
construction technique is to have learners develop a program
that implements an algorithm and then annotate the algo-
rithm with commands to produce an animation – similar to
the fashion in which one would identify key events at which
to set a breakpoint in a debugging environment.

Finally, “Presenting” requires learners to explain the visual-
ized algorithm to an audience, needing a deeper understand-
ing of the algorithm and an effective way of explaining it.

2 Goals, Methodology, and Activities

Adding these user engagement features to algorithm visual-
izations is presently hard, time-consuming work. That de-
tracts, in two ways, from progress in using AV. First, many
interesting AV systems continue to see little use as actual
learning environments because their developers do not have



the time to add the user engagement features that would
make them effective. Second, carrying out an effectiveness
study with respect to the categories in the engagement taxon-
omy requires that the AV tool has that mode of engagement
built into it. Otherwise, considerable time must be spent de-
veloping the software add-ons to support that mode of en-
gagement as a prelude to actually doing the study.

Research in the effectiveness of AV could be tremendously
accelerated if certain aspects of constructing visualizations
and the pedagogic engagement techniques to support them
became portable across multiple visualization systems. To-
ward that end, this working group will begin the process of
creating a set of design specifications for such portability
tools. The tools will facilitate sharing the following types
of resources across different AV systems:

Graphical primitives that are used for constructing the
graphics of the visualizations themselves in the form of:

• Data structure specifications that the AV system would
then be responsible for rendering – e.g. trees, graphs,
and so forth. This is the style of primitives used in AV
systems such as GAIGS [5] and JAWAA [1].

• Graphic primitives particularly amenable to rendering
algorithms. This is the style used in script-based AV
systems such as ANIMAL [7] and JSamba [9].

Hypertext documents that supplement the visualization
with various forms of text to be read by the learner in con-
junction with watching the visualization. These could in-
clude dynamically updated Web pages that present expla-
nations of the algorithm in a fashion that is aware of the
values currently being manipulated by the visualization.

Interactive questions ask the viewer to predict the next ac-
tion taken by the algorithm. The questions typically take
the form of true-false, fill-in-the-blank, multiple-choice,
and multiple-selection (similar to multiple-choice, but al-
lowing the selection of more than one answer). Questions
can be prepared in advance or dynamically generated.

To aid instructors in leading their students toward
discovery-based learning, questions may optionally have
“hints” that are offered when a student’s initial response to
a question is wrong. This facilitates the question system’s
becoming an “intelligent tutor” that could gradually guide
the student toward an understanding of the algorithm.

For instructors who want to monitor the use being made of
AV systems by their students, it would also be convenient
to have specifications for recording students’ responses to
interactive questions in a database.

A prototypical implementation of a tool-independent in-
teraction support component is already available [8].
However, it still needs to be evaluated and probably
adapted to other systems.

Interactive input generators support user construction of
input provided to the algorithm being visualized. For
sorting algorithms these input generators may allow op-
tions such as randomly generated data, data in order to
start with, data in reverse order to start with, data “nearly
sorted” to start with, and data completely specified by the
user. For graph algorithms, such an input generator may
take the form of a graph editor by which the user may con-
struct the graph to be acted upon by the algorithm being
viewed.

Content generation libraries aim to aid in constructing
new visualizations. For example, a class library may visu-
alize data structures using the appropriate graphical prim-
itives described above. This can help programmers to see
what their program does, and make generating visualiza-
tions (much) easier.

Alternatively, members of the group can examine the area
of simulation exercises [4]. Storyboard systems such as
ALVIS [2] and drag-and-drop based systems such as ANI-
MAL [7] also promise easy and quick content generation.
This promise can be evaluated within the working group.

To ensure portability across different AV systems, each of the
support tools will present its associated data to the AV sys-
tems in XML form. The working group therefore also has
to design an XML language for describing the components.
After ITiCSE 2005, a team of participants shall begin im-
plementing a parser for this language that converts the XML
into an object tree. This object tree can then be encoded in
an appropriate way for the set of supported tools. Instead of
having n implementations of the same XML parser, we work
towards one parser and a set of AV system “plug-ins” using
this shared parser, making the adoption of the shared XML
format easier and less time-consuming for each AV system
developer.

In electronic communication before the working group con-
venes in Portugal, members will attempt to develop consen-
sus on what types of interaction tools are needed. The list
provided above is only meant as a starting point for discus-
sion. We fully expect that other researchers may see the need
for different tools. Therefore, pre-conference interaction will
be intended to “flesh out” the list provided above.

During ITiCSE 2005, the group will develop detailed design
specifications for these tools. These design specifications
will be developed first in the form of XML-based data type
specification and then in the form of Java class interfaces
that could support the delivery of such XML documents to
AV systems developed in Java. After members of the work-
ing group return to their home institutions, it is hoped that
many of them will begin the development (either by their
own efforts or those of their research students) of the Java
classes that meet the interface specifications that appear in
the working group report.



We also hope that many members of the working group will
be interested in re-convening in 2006 to discuss the progress
of their work in what we hope becomes a loosely connected
software development project. More specifically, this re-
convening would allow us to bring better closure to the soft-
ware development efforts that will have taken place in the in-
tervening year. Hopefully, these efforts will have progressed
enough that the 2006 iteration of the group could make con-
siderable progress in efforts to deploy these class libraries
across multiple AV systems and to disseminate the results of
such work.

3 Qualifications of the co-chairs

Tom Naps received the PhD in Mathematical Logic from the
University of Notre Dame in 1975. Since then he has taught
a broad range of mathematics and computer science courses,
first in the University of Wisconsin Center System (1975-
81), then at Lawrence University (1981-2001), and now at
the University of Wisconsin - Oshkosh.

Since 1987 he has pursued AV both from the perspective
of an instructor who wants to design visualizations of par-
ticular algorithms to help his students and as the developer
of the GAIGS and JHAVÉ AV systems. Naps has writ-
ten twelve papers in the area of AV, conducted workshops
on AV under the NSF’s Undergraduate Faculty Enhance-
ment Program (1991), conducted a workshop on AV at the
1992 ACM SIGCSE Technical Symposium, conducted a tu-
torial on Java-based AV at the 2000 ITiCSE conference, and
co-chaired previous international working groups on visu-
alization at recent ITiCSE conferences. Over sixty faculty
members at other institutions have used his AV systems. In
developing GAIGS and JHAVÉ, he has worked with over
twenty undergraduate research assistants. He has collabo-
rated with John Stasko of Georgia Tech and Guido Rößling
of the Darmstadt University of Technology to incorporate
their scripting languages (Samba and Animal respectively)
into the JHAVÉ environment. He is currently working with
Scott Grissom (Grand Valley State University) and Myles
McNally (Alma College) under a three-year National Sci-
ence Foundation grant to develop instructional materials to
support AV.

Guido Rößling received the Diploma in Computer Science
from the Darmstadt University of Technology, Germany, in
1996. From 1996 to 2001, he worked as a research assistant
at the University of Siegen, Germany. He finished his Ph.D.
thesis on AV system design in 2002. In November 2001, he
joined the Darmstadt University of Technology as a research
assistant for e-learning applications.

Since 1998, he has developed the extensible AV system AN-
IMAL that is now also used in Naps’ JHAVÉ system. He
has published his research on e-learning applications since
2000. This includes several conference papers and journal
articles on AV. He was a member of the program chair for

the 2002 and 2004 Program Visualization Workshop, held in
conjunction with ITiCSE 2002 and 2004. He is also part of
the editorial board for building an extensive Web-based AV
repository.

4 Potential Participants

All of the following researchers have been contacted to pro-
vide feedback on our proposal. All have indicated an interest
in participating in the gorup if their time and financial con-
straints allow them to do so:

• Jay Anderson, Franklin and Marshall College, Lancaster,
PA

• Scott Grissom, Grand Valley State University, Allendale,
MI

• Chris Hundhausen, Washington State University, Pull-
man, WA

• Duane Jarc, University of Maryland University College,
MD

• Lauri Malmi, Helsinki University of Technology,
Helsinki, Finnland

• Andres Moreno Garcia, University of Joensuu, Joensuu,
Finnland

• Nico Myller, University of Joensuu, Joensuu, Finnland

• Susan Rodger, Duke University, Durham, NC

• David Stratton,Ballarat University, Ballarat, Australia

References

[1] Akingbade, A., Finley, T., Jackson, D., Patel, P., and
Rodger, S. H. JAWAA: Easy Web-Based Animation
from CS 0 to Advanced CS Courses. In Proceedings of
the 34th ACM SIGCSE Technical Symposium on Com-
puter Science Education (SIGCSE 2003), Reno, Nevada
(2003), ACM Press, New York, pp. 162–166.

[2] Hundhausen, C. D., and Douglas, S. SALSA and
ALVIS: A Language and System for Constructing and
Presenting Low Fidelity Algorithm Visualizations. IEEE
Symposium on Visual Languages, Los Alamitos, Califor-
nia (2000), 67–68.

[3] Hundhausen, C. D., Douglas, S. A., and Stasko, J. T.
A Meta-Study of Algorithm Visualization Effective-
ness. Journal of Visual Languages and Computing 13, 3
(2002), 259–290.

[4] Korhonen, A., and Malmi, L. Taxonomy of Visual Al-
gorithm Simulation Exercises. In Proceedings of the
Third Program Visualization Workshop, University of
Warwick, UK (July 2004), pp. 105–111.



[5] Naps, T. L., and Bressler, E. A multi-windowed en-
vironment for simultaneous visualization of related al-
gorithms on the World Wide Web. 29th ACM SIGCSE
Technical Symposium on Computer Science Education
(SIGCSE ’98), Atlanta, Georgia (mar 1998), 277–281.

[6] Naps, T. L., Rößling, G., Almstrum, V., Dann, W., Fleis-
cher, R., Hundhausen, C., Korhonen, A., Malmi, L.,
McNally, M., Rodger, S., and Velázquez-Iturbide, J. Á.
Exploring the Role of Visualization and Engagement in
Computer Science Education. ACM SIGCSE Bulletin
35, 2 (June 2003), 131–152.

[7] Rößling, G., and Freisleben, B. ANIMAL: A Sys-
tem for Supporting Multiple Roles in Algorithm Anima-
tion. Journal of Visual Languages and Computing 13, 2
(2002), 341–354.

[8] Rößling, G., and Häussge, G. Towards Tool-
Independent Interaction Support. In Proceedings of the
Third Program Visualization Workshop, University of
Warwick, UK (July 2004), pp. 99–103.

[9] Stasko, J. Smooth Continuous Animation for Portray-
ing Algorithms and Processes. In Software Visualiza-
tion, J. Stasko, J. Domingue, M. H. Brown, and B. A.
Price, Eds. MIT Press, 1998, ch. 8, pp. 103–118.


