
Development of XMLbased Tools to Support
User Interaction with Algorithm Visualization

Thomas Naps
U Wisconsin Oshkosh

naps@uwosh.edu

Guido Rößling
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ABSTRACT

As a report of a working group at ITiCSE 2005, this pa-
per represents a vision of the use of XML specifications
and tools in algorithm visualization, particularly with re-
gard to supporting user interaction. A detailed description
is given of how an interesting event to be visualized is de-
composed, combined with interactive questions, narratives,
control flow code and metadata, and finally rendered into
graphical primitive and transformation specifications. The
heart of the paper is our discussion of XML specifications
for content generation (the object being visualized), inter-
active questions, and graphical primitives and transforma-
tions, with briefer discussions of narratives and metadata.
Examples are provided for each in an appendix, with fuller
details to be published on an associated website that we
hope will become a source of future standards in this area.
In conclusion, the approach of the working group is dis-
cussed, and important remaining challenges are identified.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer & Infor-
mation Science Education - Computer Science Education

General Terms

Algorithms

Keywords

Visualization, Animation, Pedagogy, XML

1. INTRODUCTION
This paper is the result of the working group that met at

ITiCSE 2005 to discuss and develop XML-based tools for

algorithm visualization. The goal of this ongoing working
group is the development of a standard framework that will
help promote the design, implementation, and use of educa-
tional visualization systems. This is to be accomplished by
providing XML definitions of a number of elements intrinsic
to visualization systems, along with a vision of how these
XML definitions could evolve and be used both in existing
and newly developed visualization systems.

As a start, we have provided examples of XML specifica-
tions for the following:

• objects, which correspond to high level constructs (e.g.,
data structures) that are most often the focus of a vi-
sualization;

• graphical primitives, such as squares, circles, lines, and
so forth, from which more complex objects can be con-
structed and animated;

• transformations on graphical primitives, such as the
scaling, rotation, and translation of graphical primi-
tives displayed on a screen;

• narration (e.g., text, graphics, and audio) that may be
attached to particular events that occur in an anima-
tion;

• questions (e.g., quiz questions) with hints and feedback
that may be inserted in various places in an animation;

• metadata that can, for example, be used to describe
content or log how a visualization system is being used
by a student.

We have also attempted to provide guidance on
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• how more complex XML definitions can be constructed,
thereby composing lower-level events into a hierarchi-
cal structure that allows a student to view interesting
events at a specified level of detail;

• how the XML definitions provided by the working group
might be used in the many disparate visualization sys-
tems already in existence.

We want to emphasize that the XML definitions and the
overall structure of the report are meant, at this point in
time, to be neither comprehensive nor exclusive. It is hoped
that this effort will remain dynamic and that others working
in the development of visualization systems will contribute
to the work started here. This would lead to the refinement
and extension of the XML definitions proposed here, with
the goal of soon providing a set of standards that will help
further promote work in educational visualization.

1.1 Background
Educational visualization systems have been around for

many years. The most common are algorithm animators,
although various other types of visualization systems exist.
These include program execution animators, which elucidate
the execution of a source program in action, concept anima-
tors that illustrate (often abstract) concepts, such as the
working of finite state automata, and others.

Examples of current, large-scale algorithm animation sys-
tems are Animal [22], JAWAA [1], JHAVÉ [18], and Matrix-
Pro [12]. Other well-known algorithm animation systems
from the past include Samba [27], Tango [28], and Zeus
[5]. Unfortunately, the roads leading to the development
of useful, large-scale animation systems have often led to
dead ends, and some systems have withered and fallen into
disuse. The primary reason for their demise was platform
dependence—early systems could only run on specialized
hardware and with the support of software that is now no
longer in widespread use (for example, special graphics ter-
minals that ran X-Windows under Unix).

Platform independence was an elusive target until the
advent of the Web, browsers, Java, and the Java Virtual
Machine. Most current, large-scale visualization software
systems are written in Java (or some other language that
compiles to Java bytecode), which allows them to be run on
most hardware/operating system platforms.

However, many visualization systems still suffer from a
few system dependencies that preclude work done by one
designer to be used by others [19]. First, the internal repre-
sentations of structures being animated are generally both
non-standard and program-dependent. Second, it is likely
that many of the internal representations used by existing
systems are tightly coupled with the visualization software
itself. By providing XML definitions of the essential ele-
ments of a visualization, we believe that both the aspects
of program dependency and that of tight coupling of the
animation objects with the visualization software can be
eliminated. We hope that this will lead to easier and more
widespread development of effective visualization systems,
as well as a cross-fertilization that will enhance the quality
of existing systems.

1.2 A Note
It should be noted that visualization software falls into

many different categories. In order to better understand

the focus of this paper, consider the following two:

• generic, event driven visualizations using primitive graph-
ical operations;

• specific, model-based visualizations using simulation.

Algorithm animators generally fall into the first category.
That is, the effect of algorithms operating on data structures
is displayed through the use of generic low-level operations
that are not tied to the algorithm itself—elements are placed
on the screen, colored, rotated, scaled, and translated in a
manner that is independent of the algorithm being visual-
ized. The same objects and operations used to animate the
actions of one algorithm can be used for animating other al-
gorithms as well. The underlying software support structure
for accomplishing the visualization can be used to animate
topics in many, diverse subject areas.

Model-based animators, such as those animating the exe-
cution of a finite state automaton (for example, JFLAP [9]
and the hypertextbook work at http://www.cs.montana.

edu/webworks/projects/theoryportal), are generally mo-
del driven. The concrete input structure to the animator
is usually a more conceptual entity (such as a finite state
automaton specified in an XML file) which is then simu-
lated by the visualization software. Although the actions of
a finite state automaton could be visualized in simple cases
with the same primitive objects and transformations used
by algorithm animators, the capablities of the visualization
software would be limited by not being aware that the ob-
ject being animated is a finite state automaton. When the
input structure is known to be a finite state automaton, all
of the theory about finite state automata can be brought to
bear on the visualization system. For example, this would
allow the visualization system to animate the algorithm for
converting a nondeterministic finite state automaton into an
equivalent deterministic machine.

In both cases, XML can be used to define the underlying
structures that are used by the visualization software. In
the case of the finite state automaton animator, the XML
input would be based on a standard DTD for finite state
automata.

This paper does not provide XML definitions for model-
based visualizations. These would generally require XML
definitions of each model to be visualized through simula-
tion, which, although challenging in their own right, are
quite straightforward. Rather, the working group restricted
its efforts to the first category of visualizations of the generic,
event driven type.

2. PROPOSED ARCHITECTURE
The visualization environment described here is concep-

tual in nature and consists of a number of interacting compo-
nents. Designing XML specifications for the data processed
by these components allows for increased interoperability.

2.1 Data and processing components
We work from the premise that any visualization depicts

a stream of interesting events that occur on an object (for
example, a data structure). We break down the architecture
of such a system into three components—an elaborator, a
synchronizer, and a graphic decorator. As depicted in Figure
1, each component is responsible for adding certain data to
the specification that is ultimately provided to the visualizer.
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The elaborator combines an interesting event (for exam-
ple, insert 6 into a binary search tree) with an object (that
is, the tree itself) on which it occurs to produce a specifica-
tion called the interesting-event-with-object.

The synchronizer augments the interesting-event-with-ob-
ject by adding specifications that can be used to include
pedagogical hooks—interactive questions, narrations (tex-
tual, audio, and hyper-media), and so forth—that will en-
gage students, requiring them to be more than passive view-
ers of the visualization. We now have a specification called
interesting-event-with-object-and-pedagogical-information.

The graphics decorator adds the information that will de-
termine the visual layout (geometry, color, and so forth) of
the rendering that the student will see. After the graphics
decorator has done its job, we have a specification consist-
ing of interesting event with object, pedagogical information,
and graphic information.

Unwieldy terminology? Without a doubt! So, henceforth
we will refer to the interesting event with object, pedagogical
information, and graphic information as the complete visu-
alization specification. The complete visualization specifica-
tion is given to an adapter, which determines how a partic-
ular visualization system displays everything on the screen.
Figure 1 illustrates this architecture. Note that the figure is
intended to convey the group’s shared understanding that
our description of what is done by the elaborator, synchro-
nizer, and graphics decorator is not meant to imply that
their actions must occur in a “pipeline”. Rather our nomen-
clature is used to emphasize a breakdown of the roles of the
various information specifications that are processed. In any
particular implementation of a visualization system, the ac-
tions of the elaborator, synchronizer, and graphics decorator
may often be interleaved.

Visual.
System X

Adapter

Visual.
System Y

Adapter

Visual.
System Z

Adapter

Object

Interesting
Event

Graphical Primitive
Specification

Elaborator

Synchronizer

Graphics
Decorator

Complete
Visualization
Specification

Narrative

Metadata

Control Flow

Question

Figure 1: An overview of “The Big Picture”

A more detailed description of each of the information
specifications used by these components follows.

• At the highest-level is the interesting event specifica-
tion. Here, to allow a variety of perspectives, we pur-

posefully avoid a detailed definition of what an inter-
esting event is—the interested reader may consult [5,
8]. Instead we informally view it as a conceptual-level
action upon an object that can potentially be visu-
alized. In traditional computer science applications,
these events may be thought of as operations on a data
structure, although one can also envision objects such
as circuit diagrams being displayable in this model.
Events can be hierarchically organized where an upper-
level event includes a series of lower-level events. Each
event has a unique ID that allows an association of the
event with other specifications such as objects (data
structures), questions, narration, control flow, meta-
data, and graphical primitives. It is assumed that each
event in the stream of events is produced by the execu-
tion of an algorithm at some point in time, but it can
also be produced by a visualization author (possibly
with the use of some tools).

• The object specification associates a concrete and pos-
sibly high-level data structure with an interesting event
that occurs on the data structure during the algo-
rithm’s execution.

• The question specification can associate one or more
interactive questions (for example, prediction-style ques-
tions [2, 11]) with selected events.

• The narrative specification can provide “explanations”
for selected events. The simplest type of explanation
is just a fragment of text. However, we anticipate that
narratives will incorporate audio (multimedia) com-
ments, images, and/or links to URLs.

• The control flow specification associates a line or frag-
ment of code in the program (or pseudocode) with each
event to be visualized.

• The metadata specification can provide additional in-
formation related to authoring, content, student iden-
tification, and so forth.

• The graphical primitives specification provides geomet-
ric, transformation, color, and font information to the
graphics display.

Although this report will focus on discussing specifications
for the types of data in the above list, we do not mean to
imply that this list is necessarily exhaustive. We can envi-
sion (and indeed hope) that other interested parties outside
the working group will provide details for additional speci-
fications that would allow the designer to extend the value
of visualization even further.

The hierarchical structure of the interesting event referred
to in Figure 1 means, for features that are supported, that
the system can make a decision about the level of detail
to be presented in a visualization. A visualizer could be
programmed to selectively ignore lower-level events in a hi-
erarchy and provide visualization only at the level of higher-
level events. It could also be configured to present only some
of the included questions and narrations. A student could
control the level of visualization by requesting more or less
detail. One could also develop an intelligent or adaptive sys-
tem that monitors the level of student knowledge and choose
the level of visualization, proper questions, and narrations
adaptively.
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2.2 The Role of an Adapter
Although it is possible that a visualizer could directly un-

derstand all the semantics of a complete visualization speci-
fication given to it, the architecture of many existing systems
will not be suited to appropriately handling all of this infor-
mation. Modifying such existing visualization systems to in-
terpret an XML-based definition of this information will no
doubt require adapters, interfaces that transform the com-
plete visualization specification into the internal data format
used by that system. Such adapters may, in some instances,
choose to ignore some of the information in the complete
visualization specification, although doing so will obviously
cause that system to not be able to completely display the
visualization and all of its associated pedagogical hooks. In
this situation, visualization system X would merely display
its “best possible approximation” to a complete visualiza-
tion specification that was perhaps originally intended for a
different system Y.

An obvious strategy for developing such an adapter is to
define an API that allows the adapter to access only the com-
ponents of the complete visualization specification in which
it is interested. Such an API would make it unnecessary
for the writer of an adapter to traverse a large XML parse
tree, ignoring nodes in which the adapter was not interested.
This could greatly facilitate the adaptation of this model, or
parts of it, for an existing visualization system that does not
presently use XML-based specification.

2.3 Illustrative scenarios
To help clarify the architecture described in Figure 1, we

describe five scenarios of an instructor and/or student using
such a visualization system.

First scenario:

1. The instructor executes an algorithm (from a provided
library) to produce the interesting events for a specific
example. The algorithm may also produce the control
flow that synchronizes the events with the line of the
code (or pseudocode) associated with this event.

2. A special editor is used by the instructor to extend this
animation stream with narrations and questions that
form two additional specifications to be merged into
the visualization by the synchronizer.

3. The whole product is packaged into the complete visu-
alization specification, ready for the visualizer to use.

4. At runtime, the system runs the visualization for the
student, allowing the student to play the visualization
in both the forward and backward directions.

Second scenario:

An alternative scenario, but one that is likely to find fre-
quent use, is the direct production of the visualization by
the author.

1. Using an editor, an instructor composes a set of events
from an existing library of higher-level events.

2. The elaborated events are further annotated with nar-
rations and, if desired, questions by the synchronizer.

3. At the end of this process, the complete visualization
specification is interpreted by the visualizer directly,
without the need for an adapter.

Third scenario:

This is a typical scenario that is appropriate for program
visualization as well as algorithm visualization.

1. The program that produces a stream of events to be
visualized is actually being used by the student at run-
time.

2. The algorithm can request input from the student (for
example, which value to insert into a tree). This input
will dictate what the student will consequently see.

3. The program produces a stream of events in the stan-
dard format that is then immediately processed by the
elaborator, synchronizer, and graphics decorator to be
rendered.

Typically, this “on the fly” approach does not easily al-
low for the creation of narrations or questions. However, a
more advanced visualization program could generate at least
three specifications—events, control flow, and narrations—
as shown in Kumar’s “problets” [14].

Fourth scenario:

This scenario describes a client-server approach, much like
that used in JHAVÉ [17, 18].

1. The student, running the client, contacts the server
and requests a visualization for a particular algorithm,
supplying the algorithm with any input that it needs.

2. The server executes an algorithm (from a library of ex-
isting algorithms) to produce the interesting events for
this example. The server then invokes its elaborator
and synchronizer to send an XML specification to the
client.

3. The client renders the received XML specification by
applying its graphics decorator, whence the complete
visualization specification is produced and displayed.
The student then engages with the visualization to
study the algorithm.

Notice that, in this scenario, the information-processing
components in Figure 1 will likely reside on different com-
puters.

Fifth scenario:

In this scenario, the visualization is produced by the stu-
dent and submitted for automatic or instructor grading,
such as in [13, 30]. We expect this scenario to become in-
creasingly popular as teachers attempt to engage students
to work with visualizations [19].

1. The student works with a data structure to solve a
problem that requires generating a correct sequence of
actions to achieve a desired effect. These actions are
recorded as a trace of interesting events with objects.

2. The trace is immediately sent to the graphics decorator
to visualize the actions, but it is also saved in XML
format to be graded.
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3. The instructor can then read the saved trace and re-
play the sequence of actions executed by a student.
The instructor can explore this trace forwards and
backwards.

4. Any corrections and messages that the instructor wants
to deliver to the student are added to the narrative flow
synchronized with the original specification.

5. The student then uses a similar tool to analyze the
solution that has now been enhanced with the instruc-
tor’s narrative comments.

For each of the scenarios above, appropriate APIs can al-
low content authors to produce a unique animation or an
interactive animation simply as a piece of normal code ex-
tended with API calls to produce visualizable events. The
larger the library of supported animation events, the easier
the job of the author.

2.4 Semantic events and graphical primitives
The basic goal of the events specification produced by the

elaborator is to provide a semantic level description that is
close to the teacher’s and student’s perceptions of the oper-
ation. This semantic level would operate with objects and
actions. The objects could range from lower-level objects,
such as a simple variable in a program visualization, to a
complex data structure in an algorithm visualization. Each
object would have a set of “eligible actions” that could be
performed upon it. For example, an array could allow its ele-
ments to be compared or swapped, have a sub-array sorted,
or simply have its elements highlighted. A variable could
have its value assigned, changed or used. To maintain con-
sistency, the community should develop an ontology of ob-
jects and actions to be supported by the shared framework
(and ideally to be understood by the elaborator component
with no additional support).

A content generator (which could be an executing algo-
rithm or a user) could generate its content on multiple lev-
els of detail. For example, it could generate a “sub-array
sorted” action and then generate a sequence of compare and
swap actions. Moreover, a swap action could be decomposed
into three variable assignment actions. Each content gener-
ator could choose the depth of definition of the actions it
generates.

The goal of the elaborator component in Figure 1 is to
interpret the conceptual events and link them to the objects
they manipulate in the form that the visualization system
could understand at the time the display is actually ren-
dered. To see why this, in varying degrees of semantic detail,
may be necessary, consider the following situation. A stu-
dent is viewing a visualization that displays an AVL-tree,
and is asked a question that requires clicking on the tree
node (circle) at which a rotation would occur when the data
item 42 is added to the tree. For the visualization system to
determine whether the student has correctly answered this
question, it would need to have considerable semantic in-
formation associated with the circles that are rendered on
the display. Each of these circles would actually represent a
tree node, so the complete visualization specification would
need to define the context of each particular graphic circle
in the AVL-tree. Without this contextual semantic informa-
tion, the student’s response could not be evaluated by the
system. It is certainly possible that not all implementations

of a visualization system will be able to take advantage of
this rich semantic detail—those that do not would simply
not be able to handle questions of the form described above.

We can anticipate at least three different variations on the
connection between events produced by the elaborator and
graphical primitives rendered in the display of the system.

1. The lowest level of event hierarchy produced by the
elaborator is directly supported by the rendering en-
gine. In that case, to visualize a lowest level event, the
graphics decorator described in Figure 1 would have
little to do; it would simply pass on the proper direc-
tions to the rendering engine. To visualize a higher-
level event, the graphics decorator would pass a se-
quence of lower-level events to the actual renderer that
the renderer would subsequently interpret.

2. Two or more levels in the event hierarchy produced by
the elaborator are supported directly. For example, the
visualizer could swap array elements (as a single basic
action), or it could show the three variable assignments
done in a swap. In this case, the graphics decorator
in Figure 1 would augment the conceptual-level ac-
tions with graphical primitives on the level currently
used for visualization. To visualize higher-level events,
the rendering engine would be instructed to show an
element swap. To visualize lower-level events, the ren-
derer would be instructed to show individual variable
assignments.

3. The lowest level of event hierarchy produced by the
elaborator is above the level supported by the graphical
primitive specification. Suppose, for example, that the
lowest level event generated were adding an element to
a queue, and the graphical specification language did
not have such a primitive. In that case, the graphics
decorator could specify the operation, using lower-level
graphical primitives that are supported. Once defined,
this definition could be used by others who wanted to
use it in the future.

3. CONTENT GENERATION

3.1 Motivation
When performing an animation there is typically a cen-

tral object. In this section, we will focus exclusively on
algorithm animation, so the objects are data structures. An
animation uses a sequence of snapshots, which capture the
states of a data structure. The XML defining a snapshot
may contain the operation being animated. In this section,
we discuss and illustrate XML representations for several
data structures. We do not endeavor to create a compre-
hensive collection of data structures, but limit ourselves to
focusing on a few of the fundamental ones.

3.2 What does it look like?
The XML specification for stack and tree below use the

following tags:

• struct for describing the data structure used in an an-
imation.

• operation for describing an interesting event on a data
structure.
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• node for defining an element in the data structure.

• param for describing graphical decorations to a node.

We begin with a very simple example of an XML represen-
tation of a stack. The following XML is a snapshot resulting
from pushing 2 onto a stack implemented with a linked list
that already contains two values.

Listing 1: Stack Snapshot

<struct type=” l i s t ” name=”stack”>
<operation>push</operation>

<node value=”2” isOpParam=”true ” />
<node value=”6” />
<node value=”3” />

</struct>

Notice that the representation contains an <operation>

tag. Our motivation for including the tag is that the repre-
sentation has to be general enough that a variety of anima-
tion systems can interpret it. For example, a system that
had built-in support for a stack and its operations might
require only the operation push and the data value 2. The
value that is to be pushed is contained in the <node> tag
that is annotated with the attribute isOpParam set to true.
However, a visualization system that only supported primi-
tives might ignore the operation and require all the data. In
that case it would use the node values listed beginning with
the value previously at the top.

To illustrate a subsequent snapshot, consider the result of
popping the stack above. The representation after the pop
looks as follows:

Listing 2: Stack after pop

<struct type=” l i s t ” name=”stack”>
<operation returnVal=”2”>pop</operation>

<node value=”6” />
<node value=”3” />

</struct>

A visualization designer may wish to append additional
information about the rendering of the object, such as color.
Additions of this type take the following form for our stack
example:

Listing 3: Stack with rendering information

<struct type=” l i s t ” name=”stack ”
color=”red”>

<operation>push</operation>

<node value=”8” isOpParam=”true”>
<param label=”top” symbol=”arrow” />

</node>

<node value=”6” />
<node value=”3” />

</struct>

In this case, the stack elements would be rendered in red
and the node containing 8 would have a label of “top” with
an arrow from the text to the node.

As an example of a nonlinear data object, consider the
binary search tree shown in Figure 2, associated with the
code from Listing 4. To allow for trees with any number of
children, the ordinal position of the child is specified. In the
case of a binary tree, the left child would be designated as
ordinal position 1 and the right child as position 2.

25

18

6

362

1

4

3

Figure 2: The tree described in Listing 4; the num-

ber to the right of each node is its id

Listing 4: XML for a tree

<struct type=”tree” kind=”binary” root=”1”>
<operation>i n s e r t </operation>

<node value=”25” id=”1” parent=”−1”
childOrd=”1”/>

<node value=”18” id=”2” parent=”1”
childOrd=”1” />

<node value=”6” id=”3” parent=”2”
childOrd=”1” />

<node value=”36” id=”4” parent=”1”
childOrd=”2” isOpParam=”true”/>

</struct>

To illustrate the tree after an insert, the branch followed
during the search of the tree is colored green, a new node
containing 8 is added and an arrow is inserted to point to
the inserted node. The resulting XML specification is shown
as Listing 8 in the appendix.

The excerpts from an example of a graph specification in
Listing 5 use the following additional tags:

• edge for defining an edge between nodes in the data
structure.

• nodeParam for defining an attribute of a node, such
as whether it has been visited, that a visualization
designer wants to appear in an animation.

• edgeParam for defining an attribute of an edge, such
as its weight.

• npVal for specifying the value of a node parameter as
defined in the <nodeParam> tag.

• epVal for specifying the value of an edge parameter as
defined in the <edgeParam> tag.

The snapshot of the more complicated structure repre-
sented by this listing is one event in the execution of Dijk-
stra’s single source shortest path algorithm. The visualiza-
tion designer wants to see as part of the animation an indi-
cation of each node’s predecessor on the path and whether
the node has been visited, as well as the weight associated
with each edge.

To indicate that the designer wants to annotate the vi-
sualization with the predecessor node id and whether the
node has been visited (using a v for visited and a u for un-
visited), one adds the node parameters pred and visited to
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the XML. Similarly, weight is added as an edge parameter.
The <npVal> tag contains the actual values (in sequence)
for the two node parameters and the <epVal> tag contains
the value of the edge weight.

Listing 5: Graph XML structure

<struct type=”graph”>
<operation>findNextNode</operation>

<nodeParam>pred</nodeParam>

<nodeParam dir=”45” color=”magenta”>
v i s i t e d </nodeParam>

<edgeParam>weight</edgeParam>

<node id=”0”>
<npVal>−1</npVal>

<npVal>v</npVal>

</node>

. . . <!−− see L i s t i n g 9 on page 135 −−>

<edge initNode=”0” endNode=”1”>
<epVal>7</epVal>

</edge>

. . . <!−− see L i s t i n g 9 on page 135 −−>

</struct>

For the full graph XML code, see Listing 9 on page 135.
The selected examples do not reveal the entire intended

data structure DTD. Nor do our examples necessarily indi-
cate the final form of the DTD. Each DTD is intended to
be extensible and is likely to undergo modification.

4. INTERACTIVE QUESTIONS

4.1 Motivation
Interactive questions provide a mechanism for the active

engagement of learners. They provide a means by which
understanding can be confirmed before proceeding further.
Such questions will frequently be used formatively, but there
is no reason why they cannot also be used to generate marks
to be used summatively. They can also provide a mecha-
nism for adaptive learning: if a learner gets the answer to
a particular question wrong, it presumably indicates a lack
of understanding. If questions are annotated with metadata
describing the topics of the question and the relative dif-
ficulty of the question, a visualizer can track the levels of
learning attainment of individual learners with respect to
individual topics. A mechanism to provide feedback based
on the answers submitted by learners is also desirable for
facilitating learning.

4.2 How do we achieve what we want?
Various types of question are possible. Multiple-choice

questions (where a single answer is selected from a number
of possible answers) are probably the most heavily used, but
other possibilities include:

• Multiple select questions, which are like multiple-choice
questions, but which may have several correct answers
which must all be selected by the user.

• Value-entry questions, for which no predefined answers
are provided. The user enters some text that is matched
(with various different degrees of permissiveness) against
the expected answer.

• Fill-the-gap questions, for which a list of terms is pro-
vided to be used to fill a series of gaps in a body of
text.

• Point-and-click questions, for which a graphical object
is identified visually by pointing and clicking on an
image map.

These question types are not entirely unrelated. A fill-
the-gap question might require one or more values to be
entered by the user rather than being selected from a list,
and a fill-the-gap question as described above can be consid-
ered as a group of related multiple-choice questions. Simi-
larly, a point-and-click question can be regarded as a form of
multiple-choice or fill-the-gap question based on a graphical
form of user interaction. However, due to the differences in
the intended rendering of these different question types, it
seems useful to retain the distinction between them in order
to leave the author with a choice as to which question type
to use (and hence which rendering the visualizer will use).

The Trakla2 system [16] uses a somewhat different ap-
proach to implementing interactive questions. It is based
around a visualizer implemented as a Java applet. Each ex-
ercise is implemented as a Java class, which provides a data
structure that is filled with randomized values. The learner
is asked to show how the data structure is transformed as the
result of a sequence of operations (for example, by inserting
values into a balanced tree). The learner interacts with the
applet by dragging and dropping the visual components it
provides (as well as additional operations such as “delete”),
and a serialized form of the resulting data structure at each
stage is compared with a model solution.

The advantage of this approach is its flexibility; the pri-
mary drawback is its reliance on a specific applet, which
makes it a very system-specific solution. We have deliber-
ately avoided including drag-and-drop as a separate question
type within our framework, as this is a style of interaction
which is not supported by all user interfaces (for example, a
browser without the aid of a supporting applet). However,
the equivalent of dragging and dropping can be modeled as
the selection of two endpoints. By allowing the user to select
a node to move and a destination position by clicking twice
on an image map, or by selecting objects by name from two
lists of object names, it is possible to model the same type
of question in a less interface-dependent way, and does not
prevent a user interface that supports drag and drop from
producing the two endpoint values as the outcome of such
an operation.

Like many automatic assessment systems, Trakla2 also
supports randomized questions and answers. Trakla2 is able
to generate random input data for an algorithm, so the ques-
tions can effectively be randomly generated so that the data
structure the learner is given will vary from one version of
the question to another. Our specification also supports
randomization, and, for example, allows the distractors (in-
correct answers) presented in a multiple-choice question to
be chosen at random from a pool of possible distractors as-
sociated with the question. Similarly, it is possible to spec-
ify a random choice of a question from a pool of questions,
which may use metadata information to influence the choice
of question according to the learner’s perceived needs.

There already exist standards for interactive questions,
notably the IMS Question & Test Interoperability (QTI)
standard [23, 24, 25]. One possibility would be to adopt
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the QTI standard for use within a visualization specification.
However, the QTI standard is an extremely far-ranging stan-
dard which is probably far more general than is necessary for
use as part of a visualization specification. In addition, the
mechanism by which value-entry questions are formulated,
as described above, is left unspecified in the QTI standard.
In our case, a simple mechanism, such as matching the an-
swer against a given regular expression, will suffice.

Another possibility is to define a specification which is
more suited to our immediate needs. With this approach, if
an author wants to be able to import questions from, or ex-
port questions to, a QTI-compliant assessment system, the
simpler markup defined in our standard can be transformed
to or from a QTI-compliant format using XSLT [6].

There are some additional complications. Questions are
likely to need to refer to graphical objects being displayed
by the visualizer, and so a tag that allows graphical objects
to be referenced is needed. Exporting to a QTI-compliant
form would still be possible if, for example, such tags were
transformed into the name of the corresponding object at
export time.

Our basic approach is therefore to define a special-purpose
XML specification of questions and answers. For the sake of
generality, the body of questions and answers can be written
in XHTML [20] augmented with additional specialist tags
such as the object reference tag described above. Ques-
tions can therefore include constructs such as hyperlinks,
tables, images, and audiovisual streams. The standard in-
cludes metadata to allow student attainment to be tracked
automatically in systems that support adaptive learning.
Marking is supported by associating a value representing
the marks for each possible answer, and the mark obtained
is simply a total derived from the answers actually selected.
Similarly, feedback is supported by associating some XHTML
text with each answer, which can be displayed when the cor-
responding answer is selected.

It should be noted that not all animation systems will need
to support all (or indeed any) of the features described here.
Any features of our standard which a particular visualizer
does not choose to support can simply be ignored.

The XML specification defines the following primitives for
different question types:

• select—for questions for which multiple selections of
answers are possible.

• select-one—for questions for which only one correct
answer is possible.

• value-entry—for questions for which the user is re-
quested to input a number, or a word, as the answer.
Such questions could be corrected automatically by
matching the given solution to a set of possible correct
answers.

• free-text—for questions that ask students to write down
a larger answer that is subsequently checked by a teacher.

• upload—for support of an automatic method of col-
lecting answers. Any kind of file could be uploaded to
a central server for later use.

• click—for questions that require clicking in certain
part of the animation. We are aware of the difficulties

of implementing this. However, alternative implemen-
tations could display a list of the possible choices (for
example, nodes in a tree).

• fill—for fill-the-gap questions that contain several in-
put boxes within a narration.

The following sub-elements are common to most of the el-
ements specified above. Sub-element item defines one of the
choices, input specifies the addition of an input box, used for
fill and value-entry. Several parts of a question, for example
its formulation and answers, and advanced entries such as
feedback or hint, are defined similarly, but for different pur-
poses. We therefore incorporate a general container element
contents. The actual purpose of an element is specified in
the type attribute. Element contents allows authors to in-
clude text, images, and, more importantly, the references
to visual objects displayed in the animation. These refer-
ences are marked inside the contents element as object-ref.
The object-ref element has two main attributes, objid and
type, where objid is the identification given by the “graph-
ical engine”, and type identifies the type of information we
want to display (label, textual representation, or graphical
representation).

Listing 6 shows excerpts from an example of a multiple-
choice question. It will display three options, two random
incorrect answers (“distractors”) chosen from three, plus the
correct answer with id it3. All options provide proper feed-
back. The full listing is included as Listing 12 in the ap-
pendix.

Listing 6: Example for a multiple-choice question

<select−one id=”ques t ion1 ” solutionID=”i t 3 ”
random=”3”>

<metadata> . . . </metadata>

<contents type=”label ”>... </contents>

<contents type=”hint ”>... </contents>

<item id=”i t 1”>
<contents type=”answer”>... </contents>

<contents type=”feedback”>... </contents>

</item>

<item id=”i t 2”>
<contents type=”answer”>... </contents>

<contents type=”feedback”>... </contents>

</item>

<item id=”i t 3”>
<contents type=”answer”>... </contents>

<contents type=”feedback”>... </contents>

</item>

<item id=”i t 4”>
<contents type=”answer”>... </contents>

<contents type=”feedback”>... </contents>

</item>

</select−one>

Multiple-selection questions will be implemented with the
select element. This type of question can have multiple solu-
tions, thus different grades for all possible answers could be
assigned. The complete XML associated with the excerpts
in Listing 6 appears in the appendix as Listing 12.

The user has to provide manual input for value-entry
questions. The difference between this type and free-text
questions is the correction of the given answers. While value-
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entry answers may be corrected automatically, free-text sub-
missions should be corrected by a teacher.

Fill-the-gap questions can specify the set of acceptable
answers for each gap. One implementation approach is to
show all terms specified in the gaps in random order. The
user then has to pick appropriate terms from this list for
each gap. Note, however, that this results not so much in
a “real” fill-the-gap approach as in a mapping operation.
Excerpts from an XML specification for an example question
in Listing 7 refer to external metadata associated with the
question. (The complete XML for this appears as Listing 15
in the appendix.)

Listing 7: Fill-the-gap example

< f i l l id=”ques t ion2”>
<contents type=”answer” > . . .
<input answer=”data” / > . . .
<input answer=”nodes” / > . . .
<input answer=”edges ” / > . . .

</contents>

<contents type=”hint ”>... </contents>

<contents type=”feedback”>... </contents>

</ f i l l >

A variety of additional examples of XML-based interactive
questions appears in Listings 12-14 of the Appendix.

5. NARRATIVES
Narratives allow a visualizer to provide additional levels

of explanation for a topic being presented. This may be
textual, or it may be in a more complex format such as an
audiovisual presentation. The content of such narratives is
expressible as XHTML. Adaptive systems might want to be
able to select between different narratives based on the skill
level of the learner. Narratives should be closely tied to the
metadata used to describe skill levels.

In a non-adaptive system where a visualisation is associ-
ated with multiple narratives, it is necessary to provide a
mechanism by which the system can identify the “default”
narrative to be presented. The visualizer might choose to
render the default narrative or to present the learner with a
menu of available narratives to choose from. Alternatively,
the default narrative might be presented initially under all
circumstances and the remaining narratives made available
for the user to choose from by selecting from a list of titles.

The narration element shown in Listing 16 in the appendix
explains that two elements will be swapped because they
are unordered. Based on the metadata description of the
assumed user’s skill level, the information may be hidden
by the system.

6. METADATA
Objects created following the XML specifications for data

structures, questions, narrations, and animations lack higher
order information, the metadata. Higher-order information
includes data about the author, the intended audience, the
required tool to visualize the object, and a number of other
fields that can help to categorize the object.

Basic metadata can help in tracking the document, for ex-
ample who created it and which version it is. More advanced
uses for the metadata have been proposed. For example, a
course can be adapted to the needs of a teacher [4] or a stu-
dent [29] using the metadata corresponding to the object.

Another important reason for using metadata is to inte-
grate the described content with current Learning Manage-
ment Systems (LMS). This way, teachers can adopt already-
developed animations and use them in their own courses.

We propose to let authors define metadata in two ways.
First, they can include the metadata in the actual XML doc-
ument that they want to categorize. For that purpose, they
can use our simplified metadata specification, which con-
tains important fields related to algorithm animation and
education in general. The second approach, and the more
complete, is to adopt the Learning Object Metadata spec-
ification [15]. In this case, the metadata should be stored
as a separate object and referred to by the original object.
Brase [3] details how to use LOM metadata in a learning
context. Finally, a mixed approach is also possible. Docu-
ments can contain both types of metadata, and extend each
other. General metadata should be included in the LOM
document rather than in the document itself to conform to
the standard.

Apart from the usual fields in metadata (for example, title
and author), it is important to add educational data (for
example, skill, Bloom category, and learning style) that can
help teachers and agents to make decisions about whether
the object suits their intentions.

The two complete examples in the appendix show how
metadata fits into XML documents. Listing 17 declares ba-
sic information about author and skill level. A new name-
space is created for the metadata fields, as they refer to a
specification different from the one used in the document.

Finally, the declaration in Listing 18 is sufficient to refer
to an external file containing the metadata. It also specifies
the language of the object described by the metadata. (Note
that the line breaks in the URLs in both listings in the
appendix are due to formatting reasons and do not belong
in the actual file.)

7. GRAPHICAL PRIMITIVES AND TRANS

FORMATIONS
One of the contributions of this report is the start of

a formulation of a set of XML definitions (DTDs and/or
schemas) for the kinds of graphical “primitives” and trans-
formations that might be used by a visualization system.

Previous work on algorithm animation has resulted in
many different languages for describing graphical primitives
and transformations. Some of the most well known lan-
guages are JAWAA [1], AnimalScript [21], and Samba [26].
Another general specification for graphical primitives is Scal-
able Vector Graphics [7], which has become popular in the
last few years. Our specification, described in the next two
sections, aims at combining the good features of the previous
work.

7.1 Graphical Primitives
Graphical primitives are basic graphical components that

can be composed to represent arbitrarily complex objects
(for example, a tree data structure) and direct animation
(for example, inserting a node into a tree data structure).
The following have been defined:

• point, polyline, line;

• arc, ellipse, circle and circle-segment;

• square, triangle, rectangle;
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• text.

Some of these objects are extensions of other objects. For
example, a line is a special instance of a polyline. For ease
of use, we have included these “special case” objects among
the graphical “primitives.”

All graphical primitives—in the following, abbreviated to
“primitives”—have some shared attributes: base-object, id,
hidden, depth, and style. The base-object attribute of a prim-
itive is used to associate the primitive with the more complex
object (for example, a tree node) to whose rendering it may
belong. Every primitive can have an id field to be used for
identification when transforming it. Primitives can be either
hidden or visible through use of the attribute hidden, which,
by default, is false. The depth attribute specifies the display
depth of the object, needed to determine what happens if
objects overlap.

Every graphical primitive can contain an element speci-
fying the style. Additionally, primitives can reference pre-
defined styles through the style attribute. For examples of
styles, refer to section 7.2.

Listings 19 and 20 in the appendix provide XML exam-
ples for two representative graphical primitives. Listing 19
defines a polyline object with three nodes. Listing 20 illus-
trates the support for internationalization for text objects.
Text can be displayed in any language by using multiple
contents elements as illustrated. A complete list, including
the definition for each primitive object, can be found at [10].

7.2 Styles
Consider cascading style sheets (CSS), which are used in

conjunction with HTML documents to enforce a standard
“look and feel” to an entire document without requiring the
author to attend to the stylistic details on each page. In our
specification, we want to have something similar to relieve
the author/system of the duty of applying a particular style
specification to every primitive.

Each graphical primitive is specified by several subele-
ments or attributes. The visual appearance is further speci-
fied by a style, which can specify stylistic properties, includ-
ing:

• whether it has a forward or backward arrow

• the primitive’s color and fill-color (not applicable to
all primitives)

• the font family, size, and style (bold, italic, or bold
italic)

• the primitive’s stroke type.

Not all properties are applicable to all primitive objects.
Styles can also have an identifier (id), that can be refer-

enced by multiple objects. Similar to cascading style-sheets
used in conjunction with HTML, styles can also be shared
among objects by referring to the same style id. Local at-
tributes can also be overwritten.

Listing 21 in the appendix specifies a style. When applied
to a graphical primitive, for example line, this style specifies
that the line should be solid (as opposed, say, to dashed),
colored red, three pixels wide, and have an arrow tip in the
“forward” direction. For the line object, the fill color and
font size are not applicable, although they might be for other
objects that reference this style definition.

To provide the power of CSS, which allows style sheets
to be extended, the style element can specify a style to be
extended, and it allows elements to be overwritten, as shown
in Listing 22 in the appendix.

7.3 Coordinates
To allow for flexible and easy positioning of objects in a

visualization, the DTD for primitive objects supports the
specification of coordinates, either in absolute coordinates
or as offsets relative to a given location. A location can be
based on the bounding box of an object, the node of a poly-
gon/polyline object, the last used location, or the baseline
of a text component (not taking into account under- or over-
strokes). Figure 3 and Listing 23 in the appendix illustrate
these different approaches.

In this example, the coordinates refer to the polygon in
Figure 3 (points 1 and 2) and to the text “aPoly” (point 4).
Point 3 is drawn relative to point 2.
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Figure 3: Example of relative coordinates supported

by the DTD.

7.4 Animation Steps
The transformations described in the previous section can

be combined as steps in which all the transformations com-
prising a step are done simultaneously. A step thus acts a
phase of an animation that displays some single interesting
event. A frame is similar to a frame of a movie—it repre-
sents one component in a series that is involved in visual-
izing a step. A step can thus be made up of many frames
that, for example, illustrate the effect of a step by smoothly
transitioning the visualization from the current state to the
next.

A step can also contain a title and a description of the
step in multiple languages. This narrative can be included
in the document, or it can reference a narration from an
external source. Listing 24 in the appendix illustrates this.

7.5 Transformations
The DTD for graphical primitives also covers the following

transformations that change the appearance or position of
a single primitive or a set of primitives:

• show/hide
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• move (along a set of coordinates or following an arc or
polyline object)

• rotate

• scale

• change-style

• change-property

• group/ungroup to combine a set of objects under one
ID

• swap-id to swap the IDs used to reference two objects.

All transformations can possess a timing specification that
can define the starting time of the transformation, its du-
ration, or both. There are the following ways to specify
timing:

• no timing definition: the transformation takes place at
once and without a duration.

• delay only: a delay between the start of the current
step and the start of the operation is given. The de-
lay can be specified as a time (based on seconds or
milliseconds), or on a number of preceeding anima-
tion frames. The transformation has no duration and
therefore immediately completes.

• duration only: the transformation starts at the begin-
ning of the step and takes a certain amount of time.
This can also be specified by frames or milliseconds.

• duration and delay: combines the two options above.

The other tag common to all the transformations is the
object-ref tag that refers to the objects being transformed
or used to provide a given effect.

To give an example of what the actual XML for the trans-
formations looks like, Listing 25 in the appendix shows how
to specify a rotation and translation (move) of one object
(for example, a square) along another object (for example,
a line).

7.6 Shapes
The DTD also supports defining reusable shapes. So, for

example, to specify the shape house that consists of a rect-
angle and a triangle, the XML in Listing 26 (see appendix)
can be used.

8. AN UNFOLDING RESEARCH PROGRAM
This paper represents a snapshot of a research program

that had its genesis at the ITiCSE 2005 conference in Lis-
bon, Portugal. The program’s goal was (and is) to define and
implement XML standards and associated tools that foster
advances in algorithm visualization systems, particularly in
the area of user interaction. To this end, a group of eleven
individuals committed to being part of a working group dur-
ing the conference, with the expectation that a sizable sub-
group of them would then return to their home institutions
and continue work. This subgroup, perhaps augmented with
additional individuals, anticipates meeting again as a work-
ing group during ITiCSE 2006.

The original hope was that the result of the 2005 group
labors would be a complete design document. This docu-
ment would then have been used to inform implementation
efforts during the following year. As can easily be seen, the
present document falls short of that, and should instead be
seen as a framework for future research and development.
Before the working group began, it seemed that there was
broad agreement on many issues. However, the challenges of
defining standards and architectures while maintaining in-
teroperability and compatibility revealed a number of evolv-
ing understandings rather than a unified vision. To the ex-
tent possible, within the context of this paper, these various
understandings have been smoothed out into an apparent
single vision. This belies significant areas that still require
much work and thought, such as the following:

• What is the true nature of the Elaborator? How does
it go about its job of decomposing an interesting event
into a hierarchy of subevents? How can it be made
extensible to new classes of objects and operations?

• To what level of granularity should events be decom-
posed? Is the nature of the object itself modified dur-
ing this process?

• When in the process are the graphical primitives added?
Can it be that interesting events arrive in the system
with (some) graphical primitives already attached to
them? Or should input consist only of what we have
called semantic information?

• Should the relationship between the Elaborator, Syn-
chronizer, and the Graphics Decorator be thought of
as a data-flow pipeline, or are these activities that can
be interleaved? If it is a pipeline, could an existing
visualization system tap the stream before the graph-
ics decorator does its work, receiving only semantic
information about the object being visualized?

So, beyond the basic challenge of fully developing the
XML specifications begun in this paper, there are serious
conceptual issues remaining to be tackled. The group will
tackle these issues before it reconvenes in 2006.

9. CONCLUSIONS
In this paper, we have developed a vision of how XML

standards and tools could be used to enhance algorithm vi-
sualization. Concrete examples of potential XML use in
visualization systems were given, and an overall framework
for visualization systems was developed. The XML specifi-
cations themselves—for objects, interactive questions, nar-
ratives, graphical primitives and the like—can be adapted
for use in existing visualization systems. The framework
envisioned defines a direction for future research and devel-
opment, and raises a number of interesting issues in visual-
ization system design.

The website [10] is associated with the larger research
project referenced in the last section. Please consult it for
the forthcoming DTD specifications for the examples given
in the paper, and (as research continues) additional XML-
based tools which support user interaction with algorithm
visualization.
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APPENDIX

Listing 8: Tree after insert operation

<struct type=”tree” kind=”binary” root=”1”>
<operation>i n s e r t </operation>

<!−− Color green added here −−>

<node value=”25” id=”1” parent=”−1”
childOrd=”1” color=”green” />

<node value=”18” id=”2” parent=”1”
childOrd=”1” color=”green” />

<node value=”6” id=”3” parent=”2”
childOrd=”1” color=”green” />

<node value=”36” id=”4” parent=”1”
childOrd=”2” />

<!−− New node . . . −−>

<node value=”8” id=”5” parent=”3”
childOrd=”2” isOpParam=”true”>

<!−− With arrow po in t i n g to i t −−>

<param label=”in s e r t e d ” symbol=”arrow”
dir=”225” xoff=”−50” yoff=”50” />

</node>

</struct>

Listing 9: Example XML for a Graph structure

<struct type=”graph”>
<operation>findNextNode</operation>

<nodeParam>pred</nodeParam>

<nodeParam dir=”45” color=”magenta”>
v i s i t e d

</nodeParam>

<edgeParam>weight</edgeParam>

<node id=”0”>
<npVal>−1</npVal>

<npVal>v</npVal>

</node>

<node id=”1”>
<npVal>0</npVal>

<npVal>v</npVal>

</node>

<node id=”2”>
<npVal>−1</npVal>

<npVal>u</npVal>

</node>

<node id=”3”>
<npVal>−1</npVal>

<npVal >u</npVal>

</node>

<edge initNode=”0” endNode=”1”>
<epVal>7</epVal>

</edge>

<edge initNode=”0” endNode=”2”>
<epVal>5</epVal>

</edge>

<edge initNode=”2” endNode=”3”>
<epVal>2</epVal>

</edge>

<edge initNode=”1” endNode=”3”>
<epVal>4</epVal>

</edge>

</struct>

Listing 10: Multiple selection question example

<select id=”ques t ion2 ” random=”2”>
<metadata href=”e l s ewhere”></metadata>

<contents type=”label”>In which of the se
l i s t s , a swap operation w i l l be performed
in the next step? Suppose that the l a s t
element proce s s ed i s the th i rd one .

</contents>

<contents type=”hint”>A swap operation w i l l
be performed i f two next e lements are not
ordered c o r r e c t l y .</contents>

<item id=”i t 1 ” grade=”1”>
<contents type=”answer”>

<object−ref objid=”bad l i s t 1 ”/>

</contents>

<contents type=”feedback”>Wrong answer ,
t h i s l i s t i s a l r eady ordered </contents>

</item>

<item id=”i t 2 ” grade=”2”>
<contents type=”answer”>

<object−ref objid=”bad l i s t 2 ”/>

</contents>

<contents type=”feedback”>Not bad , although
there are unordered items , the next
two are ordered .</contents>

</item>

<item id=”i t 3 ” grade=”4”>
<contents type=”answer”>

<object−ref objid=”good l i s t 1 ”/>

</contents>

<contents type=”feedback”>Great . Elements
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<object−ref objid=”elem4”/> and
<object−ref objid=”elem5”/> are unordered

and w i l l be swapped.</contents>

</item>

</select>

Listing 11: Multiple selection with id list

<select id=”ques t ion2 ” random=”2”
solutionID=”i t 3 i t 4”>

<metadata href=”e l s ewhere”></metadata>

<contents type=”label”>In which of the se
l i s t s w i l l a swap operation be performed
in the next step? Suppose that the l a s t
element proce s s ed i s the th i rd one .

</contents>

<contents type=”hint”>A swap operation w i l l
be performed i f two next e lements are not
ordered c o r r e c t l y .</contents>

<item id=”i t 1”>
<contents type=”answer”>

<object−ref objid=”bad l i s t 1 ”/>

</contents>

<contents type=”feedback”>Wrong answer ,
t h i s l i s t i s a l r eady ordered </contents>

</item>

<item id=”i t 2”>
<contents type=”answer”>

<object−ref objid=”bad l i s t 2 ”/>

</contents>

<contents type=”feedback”>Not bad , although
there are unordered items , the next
two are ordered .</contents>

</item>

<item id=”i t 3”>
<contents type=”answer”>

<object−ref objid=”good l i s t 1 ”/>

</contents>

<contents type=”feedback”>Great ! Elements
<object−ref objid=”elem4−1”/> and
<object−ref objid=”elem5−1”/> are unordered

and w i l l be swapped.</contents>

</item>

<item id=”i t 4”>
<contents type=”answer”>

<object−ref objid=”good l i s t 2 ”/>

</contents>

<contents type=”feedback”>Great ! Elements
<object−ref objid=”elem4−2”/> and
<object−ref objid=”elem5−2”/> are unordered

and w i l l be swapped.</contents>

</item>

</select>

Listing 12: Complete XML for Multiple Choice

Question example

<select−one id=”ques t ion1 ” solutionID=”i t 3 ”
random=”3”>

<metadata>

<s k i l l type=”requ i r ed”>
<concept> l i s t </concept>

<level binary=”Known”
quantitative=”0.5”/>

</sk i l l >

<s k i l l type=”requ i r ed”>
<concept>s o r t i n g a lgor i thms </concept>

<level binary=”Known”
quantitative=”0.7”
qualitative=”inte rmed ia t e”/>

<sk i l l >

</metadata>

<contents type=”label”>Which of the
f o l l ow i n g l i s t s w i l l be the one generated
by the a lgor i thm in the next step?

</contents>

<contents type=”hint”>Think about i f a swap
operation should be executed . . .

</contents>

<item id=”i t 1”>
<contents type=”answer”>This one :
<object−ref objid=”go od l i s t ”/></contents>

<contents type=”feedback”>Great , the
a lgor i thm w i l l execute a swap operation

on the next step</contents>

</item>

<item id=”i t 2”>
<contents type=”answer”>This one :
<object−ref objid=”bad l i s t 1”/></contents>

<contents type=”feedback”>Wrong answer ,
two f i r s t e lements were a l r eady ordered .

</contents>

</item>

<item id=”i t 3”>
<contents type=”answer”>This one :
<object−ref objid=”bad l i s t 2”/></contents>

<contents type=”feedback”>Wrong answer ,
the a lgor i thm can not order the l a s t
f our e lements in one step .</contents>

</item>

<item id=”i t 4”>
<contents type=”answer”>This one :
<object−ref objid=”bad l i s t 3”/></contents>

<contents type=”feedback”>Wrong answer ,
t h i s i s the o r i g i n a l , and unordered ,
l i s t .</contents>

</item>

</select−one>
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Listing 13: Example questions for value input

<value−entry id=”ques t ion2”>
<contents type=”label”>Write an expr e s s i on

that a f t e r being eva luated g i v e s as a r e s u l t
the i n t e g e r value of 5.</contents>

<input/>
<contents type=”hint”>Think about a r i thmet i c

expre s s i ons </contents>

<contents type=”feedback”>Wrong answer , r e f i n e
your expres s ion </contents>

</value−entry>

Listing 14: Free text answer example

<free−text id=”ques t ion2”>
<metadata>

<sk i l l >

<concept>tree</concept>

<level binary=”Known”
qualitative=”inte rmed ia t e”/>

</sk i l l >

</metadata>

<contents type=”label”>Give the d e f i n i t i o n of

a tree s t r u c tu r e :</contents>

<textarea/>
<contents type=”hint”>A tree l o ok s l i k e :

<object−ref objid=”treeexample”>
</contents>

</free−text>

Listing 15: Complete XML for Fill in the gaps ex-

ample

< f i l l id=”ques t ion2”>
<contents type=”answer”>A tree i s a

<input answer=”data”/> s t r u c tu r e which
i s made of <input answer=”nodes” />
connected by <input answer=”edges ” />

</contents>

<contents type=”hint”>Remember that a l i s t
i s a data s t r u c tu r e made of elements ,
where the order i s important</contents>

<contents type=”feedback”>... </contents>

</ f i l l >

Listing 16: Example for an English narrative

<narrative id=”doc1” default=”true ”
t i t l e=”Swapping unordered items”>

<metadata> . . . </metadata>

<contents lang=”en”>
As elements <object−ref objid=”obj3 ” />
and <object−ref objid=”obj4 ” /> are
unordered , they must be swapped .

</contents>

</narrative>

Listing 17: Declaring Basic Metadata

<metadata xmlns=”http ://www. algoanim . net /
xmlspec/metadata”>

<author>

<name>Bi l l </name>

<email>b i l l@ i t i c s e 2 0 0 5 . org</email>

</author>

<t i t le >I n s e r t i o n in AVL tree s </t i t le >

<type>Animation</type>

<s k i l l type=”requ i r ed”>
<concept>bas ic−avl−t r e e s </concept>

<level binary=”Known”
qualitative=”inte rmed ia t e”/>

</sk i l l >

</metadata>

Listing 18: Refering to External Metadata

<metadata xmlns=”http ://www. algoanim . net /
xmlspec/metadata#”>

<external url=”http ://www. algoanim . net /
xmlspec/ examples /metadata . xml”/>

<language>en−US</language>

</metadata>

Listing 19: Relative coordinates example

<polyline>

<coordinate x=”20” y=”10” />
<coordinate>

<of fset x=”10” y=”30”
base−object=”pg1” node=”3” />

<!−− r e f e r s to po lygon ”pg1 ” , as shown
in Figure 3 on page 132−−>

</coordinate>

<coordinate x=”10” y=”20” />
<closed value=”true ” />

</polyline>

Listing 20: Internationalization in text primitives

<text>

<coordinate x=”30” y=”50” />
<alignment value=” l e f t ” />
<boxed value=”true ” />
<contents lang=”en”>

Text of the object

</contents>

<contents lang=” f i ”>
Objektin t e k s t i

</contents>

<contents lang=”de”>
Der Text des Objekts

</contents>

</text>
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Listing 21: Style example

<style id=”s t y l e 1”>
<arrow forward=”true ” backward=” f a l s e ”/>

<color name=”red”/>

< f i l l −color name=”green”/>

<stroke type=”s o l i d ” width=”3”/>

<font family=”Monospaced” s ize=”8”/>

</style>

Listing 22: Overriding style settings

<style id=”s t y l e 2 ” uses=”s t y l e 1”>
<color red=”0” green=”240” blue=”120”/>

</style>

Listing 23: Coordinates example

<!−− po in t 1 −−>

<coordinate>

<of fset x=”10” y=”10”
base−object=”pg1” anchor=”SW” />

</coordinate>

<!−− po in t 2 −−>

<coordinate>

<of fset x=”−35” y=”50”
base−object=”pg1” node=”2” />

</coordinate>

<!−− po in t 3 −−>

<coordinate>

<of fset x=”10” y=”−10” />
</coordinate>

<!−− po in t 4 −−>

<coordinate>

<of fset x=”−30” y=”30”
baseline−of=”text1 ” mode=”end” />

</coordinate>

Listing 24: Animation step example

<step>

<narrative ref=”ex t e r n a l n a r r a t i o n . html”/>

<show> . . . </show>

<move> . . . </move>

...
<move> . . . </move>

<rotate> . . . </rotate>

</step>

Listing 25: Transformations example

<rotate degree=”90” type=”simple”>
<object−ref id=”obj1 ” />
<timing><delay s=”2” /></timing>

<!−− r o t a t i on center , can be any node −−>

<coordinate x=”10” y=”20” />
</rotate>

<move type=”move”>
<object−ref id=”objGrp1” />
<timing>

<duration frames=”15” />
<delay ms=”200” />

</timing>

<along−object id=”pg1” />
</move>

Listing 26: Defining a new shape

<!−− F i r s t d e f i n e the shape −−>

<define−shape name=”house”>
<square>

<coordinate x=”10” y=”20” />
<length>10</length>

</square>

<triangle>

<coordinate x=”10” y=”20” />
<coordinate x=”15” y=”15” />
<coordinate x=”20” y=”20” />

</triangle>

</define−shape>

. . .

<!−− Later use the house shape −−>

<shape uses=”house”>
<coordinate x=”30” y=”50” />
<shape−scale value=”1.5” />

</shape>
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