

inroads — SIGCSE Bulletin - 142 - Volume 40, Number 4 — 2008 December

Enhancing Learning Management Systems to Better
Support Computer Science Education

Guido Rößling (co-chair)

TU Darmstadt
Dept of Computer Science

Germany
+49 157-72 52 4013
roessling@acm.org

Mike Joy
Univ. of Warwick

Dept of Computer Science
United Kingdom

+44 24-7652-3368
m.s.joy@warwick.ac.uk

Andrés Moreno
Univ. of Joensuu

Dept of Computer Science
 Finland

+358 1-325-17929
andres.moreno@cs.joensuu.fi

Atanas Radenski

Dept of Mathematics and
Computer Science

Chapman Univ.
 USA

+1 714-744-7657
radenski@chapman.edu

Lauri Malmi (co-chair)
Helsinki Univ. of Technology

Dept of Computer Science and
Engineering, Finland

+358 9-451-3236
lauri.malmi@tkk.fi

Andreas Kerren
Växjö Univ., School of

Mathematics and Systems
Engineering, Sweden

+46 470-76-7102
andreas.kerren@vxu.se

Thomas Naps

Univ. of Wisconsin - Oshkosh
Dept of Computer Science

 USA
+1 920-424-1388
naps@uwosh.edu

Rockford J. Ross
Montana State Univ.

Computer Science Dept
 USA

+1 406-994-4804
ross@cs.montana.edu

Michael Clancy
Computer Science Division
Univ. of California, Berkeley

USA
+1 510-642-7017

clancy@cs.berkeley.edu

Ari Korhonen
Helsinki Univ. of Technology

Dept of Computer Science and
Engineering, Finland

+358 9-451-3387
ari.korhonen@tkk.fi

Rainer Oechsle
Univ. of Applied Sciences Trier

Computer Science Dept
 Germany

+49 651-8103-508
oechsle@fh-trier.de

J. Ángel Velázquez

Iturbide
Univ. Rey Juan Carlos

Dept de Lenguajes y Sistemas
Informáticos I, Spain

+34 1-664-74-54
angel.velazquez@urjc.es

ABSTRACT
Many individual instructors — and, in some cases, entire
universities — are gravitating towards the use of comprehensive
learning management systems (LMSs), such as Blackboard and
Moodle, for managing courses and enhancing student learning.
As useful as LMSs are, they are short on features that meet
certain needs specific to computer science education. On the
other hand, computer science educators have developed—and
continue to develop—computer-based software tools that aid in
management, teaching, and/or learning in computer science
courses. In this report we provide an overview of current CS
specific on-line learning resources and guidance on how one
might best go about extending an LMS to include such tools and
resources. We refer to an LMS that is extended specifically for
computer science education as a Computing Augmented
Learning Management System, or CALMS. We also discuss
sound pedagogical practices and some practical and technical

principles for building a CALMS. However, we do not go into
details of creating a plug-in for some specific LMS. Further, the
report does not favor one LMS over another as the foundation
for a CALMS.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – Computer science Education

General Terms
Design, Human Factors

Keywords
Learning management system, LMS, CALMS, computing
augmented learning management system, computer science
education.

inroads — SIGCSE Bulletin - 143 - Volume 40, Number 4 — 2008 December

1. INTRODUCTION
Computer science education is inherently tied to the use of
software for teaching, learning, and course management.
Software systems in use range from narrowly-focused,
instructor-developed models intended to help students learn a
specific algorithm (e.g., Quicksort), to full-featured commercial
or open-source integrated program development environments,
complete with editors, compilers, debuggers, and version
control capabilities. In between (or in parallel) lies a continuum
of ever more ambitious systems for enhancing course
management and student learning. Examples include systems
that provide for

• online submission of assigned programming exercises
with automatic assessment and feedback to the student
and/or instructor (such as BOSS [65], Web-CAT [44],
CourseMarker [55], and ASB [93]),

• online exercises with automatic assessment and
feedback for abstract concepts such as data structures
and algorithms, formal languages and grammars, real
computer architectures, or theoretical machine
models, such as TRAKLA2 [84], JHAVÉ [97], JFLAP
[118], ACE, and SQL Tutor [90],

• algorithm or program visualizations systems, such as
ANIMAL [127], Jeliot 3 [92], MatrixPro [65], and
ViLLE [115],

• interactive compiling and debugging environments,
such as BlueJ [13] and Eclipse [43], and

• program plagiarism detection systems, including Moss
[3], JPlag [108] and Sherlock [64].

Despite the richness of these available CS specific resources,
one interesting observation can be made about these sorts of
systems. They are seldom used as widely beyond the institution
at which they were created as one might expect, despite being
perceived by other instructors as potentially quite useful. The
reasons for this are traceable to certain issues: instructors are
often too busy to locate, learn, teach students to learn, design
exercises around, and integrate such software into the fabric of
their courses, especially when the notation and methodology of
the system do not precisely match those of the course, thereby
creating problems for students [28, 130].

A Learning Management System (LMS) presents a potential
avenue for both enriching the content of a course and for solving
the course integration problem (for comparison, hypertextbooks
offer another approach to solving the course integration problem
[120]). In this paper, we do not make a distinction between an
LMS and a Learning Content Management System (LCMS) as,
for example, Wikipedia presently does. This is because, from
the specific point of view of computer science, the difference
between these two is not clear. Our basic premise is that
instructors should be able to tailor a course environment to
their preferences over time by integrating computer science
content into an LMS with plug-in modules for course
management or learning software developed by themselves or
others. The intent is that the whole would represent a cohesive
teaching, learning, and course management environment. We
refer to a standard LMS so modified to support computer
science education specifically as a Computing Augmented
Learning Management System (CALMS).

In the rest of this report, we pursue this idea in depth and
provide pedagogical, practical and technical guidelines for
carrying out such integration work. We focus specifically on
full-featured, extensible LMSs similar to Blackboard and
Moodle, but believe that our recommendations will apply to
other, less general environments as well. We also do not intend
to prescribe how to write a plug-in for existing LMSs, nor to
promote one LMS over another, but rather to describe the
features and characteristics proposed plug-ins and extensions
should have.
It is beyond the scope of this report, as well as beyond the
means of a Working Group, to actually develop a full-fledged
CALMS. We instead discuss the most relevant aspects of a
CALMS. This shall enable future researchers and developers to
extend a given LMS or other system to the concept of a CALMS
as described in this paper.
We pursue our objectives by first describing the results of a
survey conducted prior to the start of the working group. The
survey asked members of the computer science education
community about which LMS, if any, they utilized in support of
their courses, how they used it, which features they found
useful, and which features were missing with respect to
computer science education.
For this end, we examine the state of the art with respect to
existing teaching, learning, and course management software
systems, which have the potential for enriching the teaching and
learning experience as extensions to an existing LMS. This is
followed by a look at pedagogical and technical “best practices”
and considerations to be respected when integrating such
systems into an LMS.
Next, to concretize our goals we provide a number of scenarios
as examples of extending an LMS with selected CS specific
teaching, learning, and course management resources. This
section shall both motivate the use of a CALMS—once it is
built—and raise the interest of potential developers to support
the creation of a CALMS.
Finally, we provide a summary of the paper and some
suggestions for future work.

2. SURVEY RESULTS
Before the working group convened at ITiCSE, we conducted
an online survey to determine the nature of CS educators' use of
and attitudes toward computing augmented learning
management systems (CALMSs). Notice of the survey was
posted to a variety of CS educator lists, but disappointingly only
thirty-one responses were obtained; thus, the conclusions that
we draw from those responses should not be viewed with
statistical confidence. Nonetheless, those educators who did
respond showed a great deal of interest in the topic, and from an
anecdotal perspective, their responses offered our group some
valuable insights. These insights include the following:
1. Defining exactly what we meant proved to be a difficult task.
The definition used in the survey was as follows:
A CS-specific learning environment is regarded as a learning
resource that works in the web or as a stand-alone application,
has CS-specific content, may contain dynamic, CS-specific
elements, such as algorithm or program animations or
visualizations, automatic assessment, simulations, ... may be

inroads — SIGCSE Bulletin - 144 - Volume 40, Number 4 — 2008 December

designated for some specific purpose to support learning CS,
should ideally be available to instructors or learners from other
institutes, universities, or countries.
This definition caused confusion on the part of the respondents.
As one respondent put it:
“I am confused by this survey's introduction. The first sentence
mentions course management systems in juxtaposition with on-
line learning environments. The given definition of ‘CS-specific
learning environments’ reduces to ‘an online learning resource
that has CS-specific content,’ and gives no examples. A Java
applet that displays the powers of 2 from 1 to 256 satisfies this
definition. With this broad a definition, it is impossible to
answer the questions. I'm going to focus on course management
systems.”
This confusion led to a breakdown into two different types of
responses to our survey—those responses from educators who
were in fact using a general-purpose LMS, and responses from
those who were using smaller online software tools specifically
designed for computer science purposes, such as online code
submission/evaluation, simulators for models of computation, or
algorithm visualization. Out of the 31 respondents, 12 indicated
they were only using a large-scale LMS, 13 indicated they were
only using special-purpose learning software explicitly designed
for a CS topic, 2 indicated they were using both, and 2
responses were unclear on this point. None of the respondents
indicated that the software in the CS-specific category was
seamlessly incorporated into a large general-purpose LMS.
2. Several respondents indicated in various ways that a seamless
integration would greatly improve such learning environments.
These views became apparent in the questions we asked
regarding problem areas and obstacles to adoption for such
learning environments. For example, one respondent said
"Broadly, they (large-scale LMSs) are not flexible enough. They
constrain the user to the developer's own idiosyncratic choices
of course design, topic coverage, course management." Another
indicated that "Support for integration of algorithm
visualizations (into large-scale LMSs) is usually lacking".
Another respondent complained that "With the generic approach
(of large-scale LMSs), I can include visualizations, but I don't
have the capacity for maintaining and displaying student grades
securely, for example."
A respondent who is using the Web-CAT set of tools for
evaluating student submissions of programs commented: "The
tools we use are very nice for what they do, but together they do
not cover the full spectrum of what is required. They also are
not integrated. Being able to keep one unified gradebook and to
be able to import/export with the university's registration and
grades system would be nice. Also, the content management
features are not as robust or flexible as in something designed
specifically for that task (say, Drupal). While Web-CAT does a
great job with programming assignments, we do not have the
same support for other kinds of assignments (particularly
written homework or exams)." Another respondent who used
some of the CS-specific online tools noted that "Cooperation
and data exchange with other tools is also less than good."
The conclusion that we drew from these kinds of anecdotal
responses was that there is a growing need to integrate the
activities fostered by the CS-specific tools with the broader and
more general capabilities of LMSs.

3. In response to the question "What are the main features or
functionalities in the resource(s) that you appreciate?", the two
most frequently cited features were automatic feedback and
automatic assessment. So the ability of a system, be it a large-
scale LMS or a more specific tool, to provide students with
feedback and instructors with ways of assessing the
performance of their students are critical factors in determining
whether or not these tools are successful. The ability of the tool
to provide immediate feedback to students was seen as "more
important" for those respondents who were using the smaller,
special-purpose tools. Approximately two-thirds of them cited
automatic feedback as an important feature, while only one-
third of the users of large-scale LMSs cited it as important.
4. Some concern was expressed about the openness of the
CALMS. Is it proprietary? Is the code for the tool open source?
Is the learning content provided accessible to anyone, or only
students who are enrolled in a particular course? One respondent
said: "I avoid standard course management systems such as
Blackboard or Moodle on philosophical grounds—I will never
use any system that builds walls around access to my course
materials. Any CMS I use must be capable of allowing standard
Internet search access to those course pages that I want." (We
parenthetically note that this response was not accurate with
respect to Moodle. Moodle offers content creators the option of
making course content searchable on the web.)
5. In response to a question that asked about CS educators'
satisfaction levels with the system they used, only one of the
thirty-one respondents indicated satisfaction at a level "Perfectly
suited for the way it is used in your teaching", 12 indicated the
system(s) they used were a "pretty good fit for the way it was
used in their teaching", 13 indicated the system(s) were "OK,
but wished there was something better". Only one indicated
complete dissatisfaction with such systems.
6. In response to the question "What problems or issues would
cause you NOT to adopt a given learning environment?", the
issues that were cited by over half of the respondents were:

• The learning environment is difficult to learn how to
use: 17 out of 31

• Cost: 17 out of 31

• Browser or operating system issues: 16 out of 31

• Missing, incorrect or insufficient content: 16 out of 31
Other problem areas with existing systems, though not at a level
that would stop adoption, were anecdotally noted by
respondents. We present those responses verbatim here:

• “A system that comes with pre-written exercises either
doesn't quite match one's preferred teaching style, or
requires a significant amount of work to select and
arrange exercises that do. On the other hand, a system
without pre-written exercises requires even more work
to learn the coding and build those exercises.”

• “Dynamic paths for student learning are missing.”

• “The main problem is that my institute has had to put
a lot of effort on developing the environments by
ourselves because there were no environments that
suited our situation exactly according to our needs.”

inroads — SIGCSE Bulletin - 145 - Volume 40, Number 4 — 2008 December

• “Far too many clicks required to perform common
tasks, with significant delays to perform useless
computations thrown in for added aggravation.”

• “Team interaction tools that assist both synchronous
and asynchronous team work.”

In total, the feedback from the survey indicated an interest in the
development of a CALMS as outlined in Section 1. It is
important to note that the actual definition of what constitutes a
CALMS was only determined during the Working Group
meeting during ITiCSE; thus, the survey did not simply confirm
or modify our intentions, but rather played a large role in
helping to define them.

3. LEARNING RESOURCES OVERVIEW
Given the perceived usefulness of a CALMS, the goal of the
Working Group was to help shape the vision of the components
that make up a CALMS. Instead of reinventing the wheel, a
CALMS should incorporate aspects from the many very good
aspects offered by existing LMSs or specific tools. We will
therefore start by giving an overview of the existing learning
resources. The reviewed systems, tools, and concepts can all act
as candidate components for a CALMS. We note that the list is
by no means comprehensive, but rather summarizes good
examples of resources that are available. Moreover, we do not
aim at making a deep comparison and analysis of the resources,
but rather provide pointers to interested teachers and researchers
who consider building CALMSs.
We start with a brief overview of the types of systems and tools
covered in the following subsections. We will consider the
following kind of systems that can be used for computer science
education:

• tools relating to general pedagogy;

• augmented learning systems;

• specialized learning management systems,

• algorithm visualization tools;

• program visualization tools.
Most of the systems and tools described in the following
subsections do not directly or indirectly export their contents to
an established LMS. Existing LMSs provide facilities for
collaboration, assessment, and other kinds of pedagogy. We
begin by describing two kinds of extensions to these facilities:

• pedagogical tools, typically not yet found in the
mainstream LMSs, that provide alternatives for
collaboration, different types of system interaction, or
different media for interaction, and

• augmented learning tools covering all systems that try
to improve the learning process during the “presence
teaching” (as opposed to e-learning or distance
education) phase, mostly concerning the lecture, but
also including exercise and (presence) lab sessions.

We call systems that are dedicated to providing CS specific
exercises and giving feedback on the submissions as Specialized
Learning Management Systems (SLMSs). Many of these are
related to programming and generally they are called automatic
assessment tools. However, there are other application areas as
well. In addition, we consider tools that focus in particular on

assessment, collaboration, and so forth, within a programming
environment. Most of these rely on the coupling of an LMS with
an Integrated Development Environment (IDE) for
programming that allows extensions, or plug-ins, to add to the
functionality of the IDE. Two such IDEs are BlueJ [13] and
Eclipse [43].
Algorithm Visualization (AV) tools portray the (static and
dynamic) behavior of an abstract description of software, for
example, a given algorithm, an algorithm family such as sorting
int values stored in an array, or a larger set of algorithms (e.g.,
by using a scripting language to allow the user to "program" the
visual appearance).
Program Visualization (PV) tools show the behavior of a
program written in a specific programming language by
displaying the effect of individual operations, such as the
program state. Each command or state change, such as the
evaluation of an expression part, is visualized separately, so that
users can directly see the effect of each operation.
Both AV and PV tools are subsumed by the field “Software
Visualization” (SoftVis). The overall aim of SoftVis is to help
the user understand, improve, debug and test software. Thus,
education is only one aspect of this field. It is also useful for
visualizing the structure of large systems or the evolution of
software over time, as well as to find mistakes or
inconsistencies. There are several anthologies that provide
overviews on this field [37, 139].

3.1 Tools Relating to General Pedagogy
A number of learning environments include pedagogical
features that go beyond those provided by the typical LMS.
These features are briefly described below. They are not
domain-specific, and are intended for use in a wide variety of
contexts.

3.1.1 Collaboration
Research in the area of computer support for collaborative work
is expanding, and some of the results are appropriate for use in
education.
Vision Quest [148], a group decision support system, offered
tools for brainstorming and for rating and reorganizing
alternatives. (This system apparently is no longer available).
The family of tools referred to as W3 Interactive Talk (WIT)
[152] generalizes the threaded discussion mechanism by
allowing different types of threads.
WISE [79] includes a "gated collaboration" tool that presents a
question to a student; after a response is provided, the student is
allowed to review and rate the answers of his/her classmates and
to amend his/her own answer if the review suggests a better
alternative. This facility can also be used for formative
assessment. For example, changing one's response to a better
version is evidence of learning.
UC-WISE [27], a system built atop WISE to support semester-
long courses built from WISE activities, allows a curriculum
author to annotate WISE steps with metadata. It also provides a
similar, more flexible tagging facility for students, which are
intended to stimulate a folksonomic sort of collaboration.

inroads — SIGCSE Bulletin - 146 - Volume 40, Number 4 — 2008 December

3.1.2 Scaffolding
"Scaffolding" refers to support given to students in problem
solving. Initially substantial help and guidance are provided;
subsequently, the "scaffolds" are gradually removed, and
students are required to do more and more on their own.
Systems support scaffolding in a variety of ways.
WISE provides a hinting facility [33] with which a curriculum
author may scaffold students.
CSILE (Computer-Supported Intentional Learning) [132] is a
networked learning environment intended to foster higher-level
processes of inquiry among elementary school students. It
includes scaffolds to support students in areas such as text
analysis, theory-building, and debating, along with a construct
called a "Thinking Type" that guides students to engage in
deepening inquiry.
Belvedere [78] is another system aiming to foster critical
inquiry skills. It suggests candidate steps for proceeding further,
and structures access to materials and activities.

3.1.3 Reflection
By “reflection”, we mean learning from experience. Different
ways to encourage reflection are briefly described below.
A WISE curriculum author can include prompts to explicitly
encourage reflection.
Vision Quest included a "reflective follow-up" step, to be
completed after a decision has (provisionally) been made.
ALEL [76], which was developed to teach experimental
research methodology and statistical inference, displays a tree
that represents a student's activity path; this graphical
representation can be used as a tool for collaborative reflection.

3.1.4 Multiple representations
Multiple representations of a concept—for example in diagrams,
animations, or physical activities—contribute to richer
understanding of the concept. ALEL's tree representation of
actions has already been noted in support of the decision-
making process. To foster better knowledge organization, WISE
supports the creation and sharing of concept maps [101]. A
concept map is a diagram showing relationships between
concepts. The diagram consists of nodes, which represent
concepts, and labeled edges connecting pairs of nodes, which
represent how one of the pair of concepts is related to the other.

3.1.5 Support for "what if ...?" activities
This problem solving process typically includes choice points
where the solver tries out two or more solution approaches.
Future Learning Environments (FLE) [75] is a web-based
learning environment that focuses on creating and developing
expressions of knowledge (i.e., knowledge artifacts) and design.
FLE maintains a tree diagram of artifacts. When a choice is
made to modify an artifact, the system extends the tree diagram,
thus making clear the "inheritance structure" of artifact
modifications.

3.1.6 Authoring
Authoring with the typical LMS is free-form, using a text editor
or web form to specify each activity. In contrast, the Pattern-
Annotated Course Tool (PACT) [24] allows a course to be
authored based on pedagogical patterns, descriptions of

outstanding teaching practices recorded in a format that
facilitates a common vocabulary for pedagogical research and
practice, is accessible to novice instructors, and encourages the
repurposing and reuse of techniques that are solidly grounded in
modern pedagogy. Its visual interface displays the association
between curriculum activities and the corresponding
pedagogical patterns; patterns may be easily instantiated and
associated with corresponding activities.
PACT has been found to be useful in several scenarios,
including the following [25].

• Annotation by expert course authors. Expert content
developers have acquired substantial understanding of
what works in a course and what does not. Often,
however, this knowledge is difficult to uncover. The
process of annotating a course with references to
pedagogical patterns seems to help experienced
instructors articulate their own understanding of their
design and thereby make it more accessible to others.

• Content creation by novice instructors. PACT makes
it easy to copy large chunks of an existing course to a
newly created course. With typical courses, one
instructor hands copies of homework, exams, lecture
notes, and course syllabi to the next instructor. These
artifacts, however, are probably insufficient to reveal
the underlying rationale for the various course
activities, precisely the information that PACT is
designed to provide.

• Mediation for discussion. As a highly visual medium,
the PACT interface makes an excellent visual aid for
describing and discussing issues in pedagogy and
curriculum design. It allows the pedagogical expert to
review their own annotation with fellow teachers and
researchers (both novice and experienced) to elicit
ideas and stimulate discussion of improvements to
content and structure.

3.2 Augmented Learning
Augmented Learning approaches try to support the "classical",
lecture-based teaching style using computer support. They thus
provide support for teaching that goes beyond simply plugging a
laptop into a projector and running PowerPoint, without
targeting distance education. The underlying rationale is that the
lecture setting, whilst by no means perfect, plays an important
social role in presence teaching: it provides both a focal point
and a meeting place between lecturer and students and among
students. It therefore also helps to build a sense of "community"
and of "social presence" [131].
Applications in this area typically aid the presenter by providing
features such as an annotation layer for writing on PowerPoint
slides or whiteboards, as done in the Lecturnity [62] or E-Chalk
products [46]. Apart from annotations, both systems also
support recording the lecture materials, including annotations.
Ubiquitous Presenter [50] adds another layer by proving a
"teacher" and a "learner" perspective. In this mode, the teacher
can see a different version of the learning materials, for
example, annotated with the model answer. They can then
simply use a pen on a tablet PC to draw the highlighted
elements of the model answer and thereby "develop" the answer
in-class [50, 151].

inroads — SIGCSE Bulletin - 147 - Volume 40, Number 4 — 2008 December

Many systems support interaction during lectures. The simplest
application is to allow the students to "raise their hands"
electronically—which can be useful for the large classes often
found in European undergraduate courses, which may have
more than 400 attendees. An additional application is
participation in online quizzes [10, 12, 80, 133]. A more
interesting aspect of interaction in the classroom is submitting
questions to the teacher. Again, several systems address this
concern, including Ubiquitous Presenter [50], which allows
questions or content to be submitted to the teacher. Most
systems do not export their content to a LMS.
The Digital Lecture Hall system is an integrated software
platform that combines presentation, annotation, recording,
interaction and annotation support. Its TVremote subcomponent
provides student clients for all Java-enabled platforms ranging
from cell phones to PCs [10]. The interaction content can be
addressed directly during the lecture by the teacher, who is
informed about new questions by a counter showing the number
of "open" questions [12]. Alternatively, a co-pilot, typically a
research assistant, can handle questions while the lecturer
continues presenting. In this case, the teacher can continue
teaching while the assistant intercepts and answers (most of) the
incoming questions. Significant questions or important points
are marked for the teacher to be presented to the audience.
Finally, the assistant or teacher can use the same software client
to answer questions outside the lecture.
In a 2005 survey of 369 CS1 students, 45% stated that it would
be easier for them to ask questions if they could stay anonymous
[11]. However, fully anonymous submissions are often not
helpful, as they may incite some students to post "funny
messages", and also remove the chance to reply. TVremote
therefore uses a pseudo-anonymous address that a server can
resolve back to a concrete email address. Thus, the teacher can
reply to the students' questions, and still allow them to be
anonymous in the sense that there is no connection between the
automatically assigned pseudonym and the actual student's
name—in fact, as names are assigned randomly (and then kept
throughout the course), not even the gender of the name may
match. Again, there is currently no direct export of the
interactions taking place during the lecture to an LMS.

3.3 Specialized Learning Management
Systems
There is a large number of learning management systems, some
of which are freely available, including the popular system
Moodle [29]. In addition to these general purpose LMSs, there
exist a number of systems that are intended for CS education
only. These special purpose systems (SLMSs) typically deliver
assignments and exercises that are beyond the scope of general
purpose systems. At least two main types of such systems can
be identified: systems that check programming exercises (the
deliverable is software) and systems that check conceptual
knowledge in a specific topic.
Many SLMSs include some characteristics of general LMSs.
They might lack some characteristics, but still expand the
applicability in terms of automatic assessment and similar
features. A 2003 ITiCSE Working Group [26] defined
Computer Aided Assessment (CAA) as "any activity in which
computers are involved in the assessment process as more than

just an information storage or delivery medium." They
identified five different types of CAA in CS Education:
Multiple-choice questions, textual answers, programming
assignments, visual answers, and peer assessment. In the
following we are focusing on SLMSs that are intended to
provide numerical marking and feedback in both textual and
visual formats. Examples of such systems include Web-CAT
[44], BOSS [65], JHAVÉ [97], CourseMarker [55], TRAKLA2
[84], SQL Tutor [90], and ACE.
Their general functionality is to provide on-line exercises for
students and automatically assess and give feedback on their
submissions. The exercises can deal with different topics, such
as programming (BOSS, CourseMarker, Web-CAT), diagrams
(CourseMarker), algorithmic exercises (TRAKLA2), SQL
statements (SQL Tutor) or formal automata (ACE). In
programming exercises, many different aspects can be assessed,
such as correctness, programming style, use of required
language structures, program efficiency, and so forth.
Facilities already exist for administering and correcting short
programming exercises, for example, JavaBat [104] and
JExercise [142]. Tools also exist [123] that allow an author to
ask for code from the student, then to wrap that code with the
rest of a checking program, to compile and run it, and to return
and record the result, perhaps accompanied by some analysis.
Web-CAT is a submission and autograding tool. From the web
site of its author, Stephen Edwards: "Web-CAT is a plug-in-
based web application that supports electronic submission and
automated grading of programming assignments. It supports
fully customizable, scriptable grading actions and feedback
generation for any assignment. The Web-CAT Grader supports
traditional models of automated program grading, but also
supports grading of assignments where students do their own
testing. It helps encourage test-driven development (also called
test-first coding), where students write small unit tests for each
piece of code they add. Web-CAT allows a student to submit his
or her test cases along with the solution, and grades on test
validity and test completeness as well as code correctness."
[http://people.cs.vt.edu/~edwards]
A tool that allows creation, sharing, and verification of box-and-
pointer list structure diagrams would provide a non-text medium
for assessing student understanding of data structures.
TRAKLA2 [84] provides functionality close to this. Typically,
students can submit their solutions several times, and use the
received feedback to improve their solutions. Students
graphically manipulate a given data structure representation to
simulate the working of the algorithm, and the initial data
structure is different for each student, even for each instance of
the assignment for the same student.
The systems generally record the assessment results in a
database, which allows the assignments to be used as part of the
final grading of the course. This typically requires a connection
to the database server. However, some tools also allow students
an off-line practicing mode, in which case the results are not
recorded.
A central functionality of all these systems is course
management, for example for creating larger entities, such as
units or rounds assembled from the pool of separate exercises.
Thus the teacher can structure the whole course to match the
lecture schedule, and set up deadlines for submissions. The

inroads — SIGCSE Bulletin - 148 - Volume 40, Number 4 — 2008 December

systems also allow online monitoring of student progress, and
generation of summaries of the results.
Typically, model solutions can be published after the deadline
for submissions is over. However, TRAKLA2 allows the
presentation of model solutions—as dynamic algorithm
visualizations—after each submission, because the learners get
new initial data for the next time they solve the same exercise.
Many systems log additional information about student
activities, such as date, time, and total number of submissions.
TRAKLA2 also logs information about the use of model
solutions, which allows teachers to gather data about
problematic issues within the learning content.

3.4 Algorithm Visualization Tools
Many algorithm visualization tools are freely available. In the
following, we will therefore focus on key aspects of such
systems and refer to established systems, without presenting
them in detail.
Rößling and Naps [129] have described a set of requirements to
make AV tools effective learning tools.

• Users should be able to provide input to the algorithm.
This is achieved in the content generators provided by
ANIMAL [122] and JHAVÉ [98], as well as by the
approach taken by Matrix Pro [66].

• It is very important to have an unlimited rewind
facility, allowing students to step backwards and
forwards as needed to gain a better understanding.
This function is available at least in the ANIMAL,
JHAVÉ, MatrixPro, and TRAKLA2 systems, but
missing or limited in many other systems.

• The system should provide a structural view of the
algorithm. This view allows learners and teachers to
directly jump to key aspects, without having to search
for them or navigate through less interesting steps.
This feature is offered by ANIMAL, provided that the
content author provides appropriate markup.

• The inclusion of activating elements such as “stop and
think” questions [96, 99] or "visual algorithm
simulation exercises" [84] can help raise the learner's
engagement, thus helping to achieve better learning
outcomes.

A previous working group report proposed the integration of
algorithm visualization tools with a learning management
system and a database for course management reasons, for
example, to track student activities and points reached. The
resulting system is called a Visualization-based Computer
Science Hypertextbook [130]. Partial implementations of such
systems are now available in TRAKLA2, and as a Moodle
module for the AV systems JAWAA2, ANIMAL and JHAVÉ
[125]. These systems, when they have been further refined, will
be a good stepping stone towards a CALMS.
From the perspective of CS-specific education, algorithm
visualization tools should support a set of relevant data
structures and/or algorithms. This includes at least arrays,
matrices, graphs, and list elements, as offered in JAWAA2 [4],
ANIMAL, JHAVÉ, and MatrixPro among other systems. There
are other relevant data structures, such as queues, stacks, and

trees, which are supported by JAWAA2, JHAVÉ, and
MatrixPro.
ANIMAL allows content to be generated using drag and drop
actions, with a scripting language [128], a Java API [124], or a
set of built-in generators [122]. Each approach, except for the
first, can be used to automate the generation of animation
content. MatrixPro takes a different approach in terms of visual
algorithm simulation [71] for the rapid creation of algorithm
visualizations and animations. The same technique is utilized in
TRAKLA2 exercises. The focus of MatrixPro lies in portraying
and manipulating algorithms and data structures in a lecture
"on-the-fly" (i.e., without prior preparation before the lecture).
The inclusion of source or pseudo code next to the actual
visualization can help learners to understand the connection
between what they see happening and the matching code lines.
The ANIMAL system provides this, together with indentation and
highlighting support, to indicate the current line of code under
execution. A similar approach is taken in the model answers of
TRAKLA2 exercises that show step by step how the visual
algorithm simulation is supposed to be carried out.
For international users, one important aspect can be the
internationalization of the graphical user interface and the
content. ANIMAL currently supports English, German and
Italian, with plans for Russian, Bulgarian and Finnish. The same
underlying translation package [126] has been used to translate
the Jeliot 3 program visualization system into English, Finnish,
German, Spanish, and French. TRAKLA2 exercises are
available in Finnish and English with plans for Spanish
assignments.

3.5 Program Visualization Tools
The number of program visualization and animation tools for
educational purposes is lower than the number of algorithm
animation and visualization tools. The effort needed to write a
simple program visualization tool is far higher than for a simple
algorithm animation tool. For example, a program visualization
tool needs to parse, analyze, and interpret or "render" the
statements and operations of the underlying programming
language. Even for a small programming language, this results
in a large set of aspects that have to be covered, such as variable
declarations and lookup, method declaration and invocation,
parameter passing, expression evaluation, and so forth.
As the approaches taken by the different systems cover many
different aspects, we will briefly describe the basic features of
selected representative systems.
Jeliot 3 visualizes user-written Java programs and object-
oriented features [92]. Method calls, variables, and operations
are visualized as the animation progresses, allowing the student
to follow the execution of a program step by step. A problem
with this type of program visualization tool is inflexibility
regarding the visual mapping from the program state to the
visual representation. ViLLE [115] is a program visualization
tool that addresses the same challenges, but in language-
independent fashion—the visualizations can be viewed in any of
the predefined languages. It has a parallel view that displays
program execution in two languages simultaneously. As in
many PV systems, it is possible to trace program execution line
by line and monitor program outputs and changes in variable
values. Moreover, in order to make visualizations easily

inroads — SIGCSE Bulletin - 149 - Volume 40, Number 4 — 2008 December

interpretable, ViLLE has an automatically generated textual
description of each code line, including the role of variables.
Other, non-automatic approaches used in Algorithm
Visualization (for example, the so-called interesting event
approach [39]) allow the user to freely change the resulting
visualization [35].
Alice [31] allows the user to visually assemble programs by
selecting statements from a set of possible operations and filling
in placeholders, such as the condition for an if statement. The
visualization of the program is done in a virtual 3D
environment. A similar approach to programming is taken in the
Greenfoot system [52].
A different kind of system produces animations at the border
between algorithm animation and program visualization. Such
program visualization systems aim at displaying high-level
programming paradigms, specific language features, or specific
classes of algorithms, and deliver animations very close to those
rendered by traditional algorithm animation systems. For
instance, WinHIPE IDE [103] graphically displays expressions
for a functional programming language. The resulting
animations exhibit a high level of abstraction and are therefore
similar to algorithm animations. Another example is the SRec
system [144] that automatically generates visualizations and
animations of recursive methods in Java. SRec provides
multiple views of recursion, including recursion trees, which are
typical visualizations in many algorithms.

4. PEDAGOGY
Apart from the actual systems and approaches described in
Section 3, the developers of a CALMS should also be aware of
those aspects of pedagogy that apply to building and using a
CALMS. This includes both a sound foundation of pedagogical
theory that we discuss in Section 4.1, and a number of practical
considerations of which a teacher should be aware (Section 4.2).
After these we present “pedagogical patterns” useful in a CS
education context (Section 4.3).

4.1 Pedagogical Theory
Effective design and construction of a CALMS must be
underpinned by sound pedagogy. Not all aspects of education
theory that we discuss here are necessarily relevant to each
CALMS instance, but an awareness of these issues, and the
application of pedagogical principles where appropriate, are
fundamental.

4.1.1 Instructional process
Teaching and learning can be considered together as a single
process, called the instructional process, which contains several
phases—see Figure 1. The process starts with defining goals or
learning objectives, which requires the listing of goals that are
to be achieved during the process. The next phase is the
mapping of a pathway, describing how the goals are to be
achieved. This includes defining the content to be covered, the
learning tasks to be carried out, the order of those tasks, how
assessment will be carried out, and so on. This is the followed
by the teaching/learning phase during which the tasks are
carried out. The final phase is evaluation of learning outcomes
where the initial learning objectives can be compared to what
was actually achieved. An essential part of the process is
feedback that informs future iterations of the process. For
example, the learning goals may need refinement or up-

/downgrading, the instructional methods may need to be
changed to better match the set goals, or more time might be
needed for a certain phase in teaching.
Note that the process model can be applied on several levels:
such as course level or a single assignment level, or even on a
curriculum level.

Figure 1. The instructional process [89].

It is also important to note that the instructional process can be
considered both from the teacher's perspective and the learner's
perspective. A teacher selects teaching methods, prepares
learning resources, defines course schedules in the planning
phase, and interacts with learners in various ways during the
process. Learners also set their own goals, which may be the
same or different from those stated by the teacher. Learners also
plan a personal schedule for working, which resources they are
going to access or acquire, which tasks they are going to
perform (or, perhaps, skip), and so forth.
The instructional process may also be regulated by the
institution arranging the instruction. General objectives for
courses and whole programs are set, specific teaching methods
or instructional arrangements may be supported or required, and
certain forms of assessment can be requested. The institution
may also set limits for what resources, such as an LMS, are
allowed to be used or should be used.

4.1.2 Learning theories
Learning theories provide behavioral or psychological models
about the learning process. In particular, behaviorism,
constructivism and cognitivism have gained special attention.
Behaviorism [136] is based on the assumption that human
behavior can be explained just by publicly observable processes,
without any internal mental processes. Education is organized
according to external events and outcomes, such as classes,
assignments and assessments. Behaviorism has been criticized
for only supporting processes of lower intellectual level.
However, these processes are necessary in most disciplines,
including CS. For instance, coding requires extensive practice
and repetition in using the different programming constructs.
The cognitivist approach [6] supposes that a learner has clear
and discrete mental states and thought processes that can be
regarded as changing, or being changed, in an algorithmic
fashion. This is a richer view than that of behaviorism, since the
internal mind states of a learner are perceived as complex, rather
than the result of the learner responding in a simple and
controllable way to stimuli.

inroads — SIGCSE Bulletin - 150 - Volume 40, Number 4 — 2008 December

Constructivism [21, 109] suggests that individuals construct new
knowledge from their experiences through processes of
accommodation and assimilation. Students build their own
meanings of knowledge in interaction with their environment
and opinions of other people. Thus, the instructor must design
learning experiences that are oriented to the use of previous
knowledge and construction of new knowledge. For example, a
constructivist approach is taken in collaborative learning, which
emphasizes individual and collective experiences and
collaborative processes that lead to knowledge acquisition.

4.1.3 Learning taxonomies
Taxonomies of educational objectives describe and categorize
the stages that an individual may reach during a learning
process. They greatly vary in aim and structure. Some
taxonomies divide educational objectives into three domains—
cognitive, affective and psychomotor—whereas others try to
integrate them. On the other hand, some taxonomies, such as
Bloom’s taxonomy [20], categorize student performance in a
linear hierarchy, whereas others, like the revised Bloom’s
taxonomy [7], use a matrix.
Learning taxonomies can be seen as a language which can be
used in a variety of educational contexts. One common use is
the definition of the curriculum objectives of a course, so that
the desired level of understanding for each topic is stated.
Taxonomies are also used to assess students’ performances.
Another application is checking curriculum alignment, which is
the matching of course learning goals, activities planned to
achieve these goals and assessment of student performance.
Finally, learning taxonomies have been used in other contexts,
such as a framework to specify educational applications or
materials, structuring exercises in computer-based and
computer-assisted instruction, or introducing students to a
learning taxonomy to raise their awareness and improve their
level of understanding and their studying techniques. Each of
these uses is relevant to CALMSs.
Commonly used taxonomies utilized within CS education
include Bloom’s taxonomy [20] and SOLO [19]. Their merits
are discussed in the literature, but they also exhibit problems,
and the design or adoption of a taxonomy which is adequate for
CS is still an open issue. A past ITiCSE working group report
contains a good survey of the topic [47].

4.1.4 Learning styles
Students engage with their individual learning processes in
different ways. For example, some students may want to
actively discuss learning materials with their colleagues,
whereas others may prefer to read material on their own. These
differences are generically known as learning styles and much
work has been done to identify both how to articulate what
styles might be, and how engaging with different styles might
positively affect a student's learning.
There are several models of learning style, which we only
briefly mention here. The reader is advised to look at the
references to find more information. Perhaps the most
frequently cited is Felder and Silverman's Learning Style
Theory [45] which classifies a student on four scales: active vs.
reflective, sensing vs. intuitive, visual vs. verbal and sequential
vs. global. Gardner’s Multiple Intelligences [49] uses even more

dimensions: linguistic, logical-mathematical, spatial, bodily-
kinesthetic, musical, interpersonal, intrapersonal and naturalist.
Kolb’s Learning Style Theory [70] employs a four-stage cycle,
as depicted in Figure 2. He proposes four learning styles—
diverging, assimilating, converging and accommodating—based
on the stages in the cycle with which the learners principally
engages.

Figure 2. Kolb's learning cycle.

The Dunn and Dunn Learning Styles Model [42] contains five
components that influence a student's learning—their
personality, their emotional and physical state, the physical
environment, and social factors (such as their teachers and
peers).
In the computing context, recent work suggests that active
engagement [9, 112, 119] is an effective strategy that suits many
learners' styles.
There are two important issues to remember when considering
learning styles. Obviously, differences between individual
students will affect the efficacy of a CALMS, especially if the
material contained within it focuses on a particular genre.
However, learning styles are not static properties of people. The
same people may use different learning styles depending on the
context and their motivation. They can also develop their skills
in the dimensions where they are weaker—the CALMS might
even be designed to support this. As an overall observation we
conclude that presenting content in many different ways is an
advantage because it supports many different learning styles.

4.1.5 Motivation
Motivation positively affects a student's engagement with their
learning experience, which is highly relevant for computing
students. Active engagement in the student's learning process
[58] and a rich source of material to support their self-guided
study [114] are both important motivating factors, and the
availability of such resources online is valuable [53].
Motivation can be classified in two ways. Internal motivation
grows from the learner's own interest in mastering content or
skills, whereas external motivation is based on reaching some
goal, such as getting a grade or high mark, or avoiding a
punishment.

4.1.6 Collaborative learning
Collaborative learning has been evidenced as effective in
promoting students' higher-level cognitive skills [108]. Srinivas
[142] summarizes 44 benefits of collaborative learning.
Lehtinen et al. provide a review of Computer Supported
Collaborative Learning [77].
Vygotsky [147] argued that the basic mechanism of cognitive
growth is communicative in nature. In the zone of proximal
development, the contradictions, inconsistencies and limitations

inroads — SIGCSE Bulletin - 151 - Volume 40, Number 4 — 2008 December

within a learner's explanation become apparent when the
learners need to communicate their thoughts to others—the
learners need to perceive their conceptualizations from a
different point of view. When several learners face the same
situation, communication forces them to articulate their
conceptions, which they can then compare with their peers', and
therefore groups of learners tend to perform better than those
working alone.
Learning environments should support deeper cognitive actions,
but this is not always the case. Sometimes students manage and
even succeed without thinking deeply. For example, some
students use automatic assessment tools to support a trial-and-
error approach to solving programming problems. They do not
think through the debugging process, but use feedback only as
an indication of correctness/incorrectness (thus being driven
only by external motivation).
Kitcher [69] and Dunbar [41] have shown that cognitive
division of labor is an important prerequisite for scientific
advance. Distribution of cognitive effort supports group
flexibility, thus achieving better results. Moreover, when the
members' expertise is different but overlapping, the results are
better than in homogeneous groups, suggesting that learning
environments should support collaboration and should be used
as parts of collaborative working methods. Knowledge-seeking
inquiry, such as setting goals, identifying research questions,
looking for new information, and providing explanations are
actions that could be included in the learning process and
supported by the environment. Thus, sharing documents, and
support for joint reflection and discussion, are valuable
attributes of an advanced learning environment. Note that even
in the absence of these features, the learning environment can
effectively be used collaboratively by enabling pair or small
group investigative and reflective activities [96]. For example, it
has been argued that LOGO is an important pedagogical tool
because it can encourage and facilitate student collaboration
[59, 60]. More modern approaches such as those taken by Alice
[31] and Greenfoot [52] support similar processes. Few
programming education tools have been specifically designed to
support collaboration; AlgoArena [140] is an exception in
introductory programming.
Even though collaborative working has many advantages, it is
certainly not a silver bullet. Groupware is successful only if
there is a real need for collaboration among the learners.
Moreover, learners should clearly understand how the software
can support collaboration. Finally, the collaborative paradigm
must be embedded within the whole educational culture, and
any conflict between support for collaborative learning and rules
for avoiding it (to prevent plagiarism, for example) has to be
dealt with.

4.1.7 Organizing learning content
Learning environments can broadly be classified as open or
closed. In closed learning environments, the learning content is
more or less prescribed by the teacher, and often there is a
detailed path through which the learner must proceed in order to
achieve the learning goals set by the instructor. The learner
should therefore be aware of the goals. Such environments are
useful for practicing specific skills or assimilating certain
material, such as learning to use some piece of software or
gadget. A "guided tour" of an item of software is a typical

example of a closed learning environment. Closed environments
may emphasize external motivation and often restrict learner's
initiatives.
In contrast, open learning environments allow the learner to
select the content and methods that they find appropriate at each
stage of their learning. Consequently there is no specific path to
follow, but different learners may use the environment in
different ways. It is important that the learning content not be
restricted, rather that the learner can spontaneously start to
follow some path to find more information about a topic they
find relevant. Thus, we could say that the environment supports
internal motivation, which emerges from the learner's own needs
and learning preferences. Jeliot 3, for example, allows the
learner to explore the working of different Java programs, which
the user is free to modify.
Open and closed environments set different expectations both
for learners and instructors. When designing a closed
environment, the teacher defines the relevant contents and
learning paths, and the student's role is to more or less passively
follow the instructions given by the teacher. In open learning
environments, the learner is free to explore what they consider
to be interesting and relevant, requiring the learner to be
responsible for their own progress. The teacher's role is thus
more like a coach and facilitator who provides relevant content,
helps the learner to make decisions about how to proceed, and
provides additional resources when needed.
Open learning environments support creative problem solving
and individual learning better than closed environments, and are
firmly grounded in the constructivist approach.
Designing closed learning environments is closely tied to
defining learning goals and a detailed instructional process. In
contrast, in open learning environments the teacher cannot set
up fixed paths for browsing content and carrying out learning
tasks—the environment can be organized in many different
ways. There are, however, several common models that are
widely used in both structuring the content and directing the
learner interaction when using the environment. These models
work as metaphors.
In the market model the metaphor is the market square. The
learner is walking on the square and explores what is available
in small shops, but they can visit them in any order. In practice,
the learner is provided with an environment in which they are
free to select among many different actions and content to
explore whatever they find interesting. For example, MatrixPro
allows the learner to interact with different data structures in any
order with no preferences—the learner can explore the behavior
of data structures freely or solve exercises and get feedback.
Many educational games designed for children work using the
same metaphor. In one such game, the learner is walking
through a house in which the entrance room provides access to
many different rooms with different contents and tasks. When
such a learning environment also allows the student to add new
material into the environment, it follows an open market model
[88].
The theater model emphasizes that it is not primarily a tool but
a medium in which the user modifies concepts that may not
correspond with external reality [74]. The emphasis is on
actions the user is carrying out, not on objects and their
relations. The environment stimulates imagination and

inroads — SIGCSE Bulletin - 152 - Volume 40, Number 4 — 2008 December

experimental activity, and the learner can "direct the show" by
considering different alternatives. For example, in Jeliot3 the
visualization acts as a scene, the Java program is the manuscript,
and the learner can modify the manuscript to see what kind of
effects it causes in program execution.
The story model is based on the fact that humans have a long
history of learning by telling and listening to stories. The
environment is designed based on what the learner would
experience in real life, and thus learning content could include
imitated authentic materials and tasks—not dissimilar to
problem based learning. Visualization and comparison of
structures often have an important role in this model, supporting
reflection and allowing the learner to actively relate new
information to their previous knowledge.
Finally, the object model originates from a more practical issue
of re-usability. The learning content is organized as relatively
independent chunks, called learning objects (LOs), which can be
reused in different contexts. This emphasizes the need for meta-
data to describe the LO contents. Current research in
educational technology has put much effort into developing
standards for LO metadata, such as SCORM [2].

4.2 Practical Considerations
The theoretical discussion above should be complemented by
alerting the reader to a number of practical issues.

4.2.1 Legal, social, ethical and professional issues
These issues are frequently overlooked, and in many
straightforward educational activities may not be a central
concern. However, the requirements of the professional
accrediting bodies (such as the ACM/IEEE-CS and the BCS)
include consideration for legal, social, ethical and professional
issues. This is relevant for the construction of CALMSs in many
ways.
First and foremost of all, the content of a CALMS must be legal.
There are, of course, many laws that may relate to a CALMS,
but some of the most important include the following.

• Discrimination, accessibility, and social exclusion—
the material presented must not disadvantage any
student who is likely to use it, and must not contain
any content that might be perceived as such.
Discrimination may relate to gender, sexual
orientation, ethnic or racial background, age, or
disability. In the EU, human rights legislation may
also be relevant.

• Data protection and privacy—access to the data within
the CALMS must be restricted to appropriate persons,
since much of it is "personal data" within the defining
framework of EU legislation.

• Export and import of technologies with security
implications—a sensitive issue within the US. Hence a
CALMS containing security related content may
require scrutiny.

• Intellectual property—if material from a third party is
used, appropriate permission must be sought and
obtained.

The legal requirements vary between countries; if in doubt
advice should be sought.

Social issues, beyond those prescribed by law, are also
important and, depending on the student cohort likely to be
using the CALMS, might include consideration of the economic
and cultural background of the students. Content must also be
ethical, and might include, for example, an awareness of
environmental issues.
Finally, material must follow "good practice" as defined by the
professional bodies. The most often encountered aspect of this is
plagiarism prevention.

4.2.2 Plagiarism
Plagiarism—the unauthorised and uncited use of another
person's work—is a persistent problem in academia. Much effort
has been invested on work into the detection and prevention of
such activity, both in free-text and program source code [64,
150]. Substantial resources are available online to assist teachers
in this task [100].
This becomes an issue when use of a CALMS includes
assessment (whether formative or summative). However, careful
design and authoring of material can minimize the problem. For
example, tasks can be individualized to each student. Re-use of
material that exists elsewhere (on the web or in textbooks)
should be avoided.

4.2.3 Tracking student activities
A feature of LMSs is the ability to track, in detail, all
interactions with the system. This is both a blessing and a curse.
In principle, student tracking data should enable the teacher to
profile how the system is being used, for example, by
identifying sections of the environment infrequently or
inappropriately being engaged by students. Prediction of student
performance or, at least, of their learning profiles is another
application of student tracking. Student tracking is also used in
collaborative learning systems to log and analyze students'
contributions and interactions.
Students need to be aware of how the data they have generated
by interacting with the LMS are used. If the data is used to
assess students, then that needs to be transparent, since there is a
risk of alienating students if they do not clearly understand the
process. Furthermore, the use of that data within the EU is also
regulated by data protection legislation.
Use of student data will also affect how students interact with
the system, notwithstanding any assurances that may have been
given by the instructor. Conscientious students will try to
please, even if they are not formally assessed.
A further problem with gathered data is that it is often
unreadable (e.g., as log files) or too simple (e.g., statistics
charts).

4.2.4 Documentation requirements
In a CALMS, documentation contains either technical
information required by system developers and/or content
managers , or pedagogical information.
Although a teacher may have developed activities for their
students, which are reasonable and worthwhile, they may be
required to justify those decisions to third parties. A primary
focus for such justifications would be mapping the learning
outcomes of a course to the detailed activities, particularly to the
assessment components, within the course. These may be

inroads — SIGCSE Bulletin - 153 - Volume 40, Number 4 — 2008 December

required by the institution or by external agencies (in the UK,
the Quality Assurance Agency requires such data to be
accurately maintained).

4.2.5 Mobile learning
Mobile learning is e-learning with additional capabilities and
limitations, delivered through devices such as mobile phones,
Smartphones and Personal Digital Assistants (PDAs), Pocket
PCs, or Palmtop devices [83]. More formally, mobile learning is
"Any sort of learning that happens when the learner is not in a
fixed, pre-determined location, or learning that happens when
the learner takes advantage of the learning opportunities offered
by mobile technologies" [102].
A CALMS may involve delivery on mobile devices. The
principal technical advantages of mobile devices include their
portability, small size, connectivity, rich functionality, and low
cost. These advantages may be offset by the small screen and
keyboard, possibly limited functionality, lack of robustness,
high risk of being lost, difficulty of upgrade and expansion, and
expense of connectivity [81].
Pedagogically, a mobile approach may be beneficial since it can
maintain student motivation [95], adapt to students with visual
or physical handicaps or particular learning styles [94], and be
used in a variety of learning situations, including collaborative
[57] and independent learning [23, 107]. However, there are a
number of concerns that need to be addressed [72]. Some of
these concerns concern personalization, since the small size of
mobile devices requires material to be targeted as much as
possible [105].Another concern is the functionality and
limitations of the target devices, since general e-learning design
requirements may not scale [106].
O'Malley et al. [102] have produced a set of guidelines for m-
learning and m-teaching.

4.3 Introduction to Pedagogical Patterns
Design patterns were originally introduced in the 1970s as an
architectural qualitative method by Christopher Alexander and
his colleagues [5]. In the mid-1990s, Erich Gamma and others
successfully adapted Alexander's pattern methodology to the
domain of computer software design [48]. In the broad
computing field, many authors continue to use modified
versions of the qualitative Alexandrian method [34]. In
particular, modernized Alexandrian pattern structures have been
successfully adopted in pedagogical pattern design [14, 110].
Recent guidelines [117] stress the need to find a working
balance between abstraction and concreteness. Recent
guidelines also stress design patterns that serve as working
tools—rather than general abstractions.
Since the mid 1990s, patterns have become a central theme in
the computing community. In mid–to–late 2008, when this
report was being written, a Google Scholar advanced search
produced an impressive list of 9,140 publications on pattern
language(s) in computer science, engineering, and mathematics.
Patterns have been the focus of well-established international
conferences, such as the prestigious OOPSLA and ECOOP
conferences, the specialized PLoP conferences [85], and a
number of regional conferences, such as EuroPLoP, KoalaPLoP,
and VikingPLoP. Patterns related to education are frequently in
the program of the SIGCSE and ITiCSE conferences. The
Hillside Group's website [56] offers a useful collection of

references on software patterns, including hundreds of articles,
papers, and a list of nearly 70 books on software patterns that
are currently available on the market.

4.3.1 Pedagogical pattern languages
A collection of related patterns is called a pattern language. In
the past, many such pedagogical pattern languages have been
proposed. We review some of them.
The Pedagogical Patterns Project PPP [110] has produced a
broad collection of pedagogical patterns [15-17] that are
oriented towards the traditional classroom setting. The patterns
are categorized in different groups, such as "Patterns for
Gaining Different Perspectives", "Active Learning",
"Experiential Learning", and "Feedback Patterns". These
patterns are mainly "tips and tricks" (e.g., "Teach the most
important topics first!", or "Find a complex and consistent
metaphor for the topic being taught!") and are not related to
electronic learning environments. For some patterns, however,
the pattern can best be used if it is technically supported. So, for
example, the pattern "Grade It Again, Sam" ("Provide an
environment in which students can safely make errors and learn
from them by permitting them to resubmit previous assignments
for reassessment") is easier to implement when an automatic
assessment system is available.
Another pedagogical pattern language has been developed by
Vogel and Wippermann called "Didactic Design Patterns for the
Documentation of the Modes of Teaching and Learning in
Universities" (in German) [146]. In contrast to the pedagogical
pattern project, this pattern language is especially focused on e-
learning settings. The pedagogical patterns are grouped into the
following categories:

• pre- and postprocessing of course sessions,

• presentation (e.g., tele-teaching or the use of
hypertexts and animations in a course session),

• communication and cooperation (video conference
group discussion, moderated expert chat, teamwork
supported by a learning management system, forum,
e-mail, chat, audio/video conference, and wiki) ,

• evaluation (feedback discussion by using an electronic
questionnaire and/or a forum).

In contrast to the patterns of Vogel and Wippermann, which are
supposed to help the teacher use different teaching settings, the
pedagogical pattern language by Schümmer and Lukosch [82] is
meant for supporting the communication between users and
developers of learning management systems. The patterns are
mainly features of a learning management system and use cases.
They are arranged in the following way:

• creation of the learning group (e.g., objects or places
for collaboration are locked by a password, users
comment on the quality of contributions of others),

• base technology (e.g., a server notifies about status
changes of shared data, changes data optimistically
and undoes the operations if users performed
conflicting changes),

• building the community (e.g., enroll in a course, the
teacher takes the supervising role in a learning
environment), and

inroads — SIGCSE Bulletin - 154 - Volume 40, Number 4 — 2008 December

• group support (e.g., several users edit an object in
parallel, quick check of a group’s opinion on a
question, conference with audio and/or video support,
teacher spreads news on the course, embedded e-mail,
students work on assignments and submit them to the
teacher for grading, online tests and quiz, students
review other students’ assignments).

4.3.2 Patterns for active and cooperative learning
Recently there has been increased interest in alternative learning
styles, such as active and collaborative learning (while at the
same time raising questions about the suitability of traditional
lecture and classroom pedagogy). In general, active and
cooperative learning are umbrella terms that refer to a number
of instructional models, most of which can be effectively
supported by CALMSs.
Qiu, L. and Riesbeck [112] wrote "Active learning styles
deviate from traditional lectures and reading and involve
learning by doing (physical action) and by thinking about what
has been done (mental action). Active learning techniques are
well supported by technology and are successfully applied in
both core and advanced computing courses". Cooperative
learning is active learning in a group [86]. Active and
cooperative learning patterns are of special interest in the light
of the increasing popularity of CALMSs.
Patterns for active and cooperative learning have been published
as early as 1995. Anthony [8] offers patterns for simulation
games and quiz games as part of his general purpose patterns.
Most notably, Bergin and others have collected patterns for
experiential learning [17] and patterns for active learning [16] at
various levels in various disciplines. These general patterns are
focused on a more traditional classroom environment and are
not particularly dedicated to e-learning environments and
techniques, nor do they address computer science learning
specifics.
Recently, CS educators have experimented with—and
published—a number of active/cooperative learning models that
are exclusively based on the use of CALMSs. It will be
beneficial to formalize the following models as pedagogical
learning patterns.

• The student submissions model [116]. The instructor
poses a question that all students answer online.

• The abductive learning model [112]. Abduction is a
reasoning process that starts with a set of specific
observations and then generates the best possible
explanation of those observations. Online "study
packs" stimulate students to learn abductively by
browsing, searching, and performing self-guided lab
experiments.

• The feedback loop model [9]. Just-in-Time Teaching
(JiTT) is a teaching and learning strategy based on the
interaction between web-based study assignments and
an active learner classroom. The essence of JiTT is the
feedback loop formed by the students' preparation
outside the classroom that shapes their in-class
experience.

• The daily worksheet model [22]. The instructor
administers ungraded paper quizzes each day on
which students may collaborate.

• The gated collaboration model (described in Section
3.1). The LMS poses a question; students answer, and
then review their classmates' responses.

Active e-learning patterns are of special interest in the light of
the increasing popularity of e-learning environments.
For CALMS designers and implementers, active and
cooperative learning patterns will be a resource of promising
new CALMS features. For CALMS authors, these patterns will
provide formal background for sound active learning course
design.

5. TECHNOLOGICAL GUIDELINES
So far, we have reviewed existing learning resources generated
for, or well suited to computer science education, followed by a
review of basic pedagogical aspects for creating a well-designed
learning system. In this section, we will complete the analysis of
required aspects for a CALMS by examining technological
aspects to be considered for a CALMS or a simpler computer
science education support system.
A software developer who has written a system designed for one
of the particular CS-specific instructional needs described in the
“Learning Resources Overview” section of this report may be
able to encourage the use of your system by other CS educators
by making it interoperable with one of the commonly used
LMSs. Although the system will still focus on its particular
instructional goal, it will also benefit by increasing its awareness
of the larger instructional context in which the LMS is using it.
It is beyond the scope of this report to develop details for
standards and APIs to which such plug-ins should adhere.
Nonetheless, there are general guidelines that we envision will
facilitate the efforts to turn a particular application into such a
plug-in. These include guidelines for platform independence,
licensing, dissemination, data exchange, security,
internationalization and customization, and making the system
compatible with other resources that are often used in
instruction on that topic.

5.1 Platform Independence
Platform independence is an important issue when developing
tools that will be distributed to institutions other than the
developer's own institution. Moreover, computer science
departments use a wider set of platforms than other departments.
Thus, it is advisable to extend an LMS using technologies such
as Java and open web technologies such as HTML and
Javascript.
Most current CS specific learning tools have been developed in
Java. Java's only requirement is that the user’s computer has the
Java virtual machine installed. Java technology also includes
Java Web Start, which allows starting Java applications from a
web page.

5.2 Licensing Issues
Just as platform independence can be a factor in determining
whether instructors are able to integrate the resource into an
LMS they use for their class, the licensing terms under which
the software is distributed and the additional media resources it

inroads — SIGCSE Bulletin - 155 - Volume 40, Number 4 — 2008 December

uses are important. We saw in our discussion of the survey
results in Section 2 that some respondents expressed distaste
over using proprietary software systems and resources in which
content would not be open to global web-based search tools.
Open source development is worth considering, as it fosters
external collaboration, often resulting in more comprehensive
software developed by educators who have neither the time nor
inclination to become involved in proprietary software
development. This is precisely the reason why so many
widespread CS tools are distributed for free.
If that software then accesses and manipulates hypermedia
materials, there may well be copyright concerns when the
software moves from being a special-use application to being a
plug-in for a large-scale, widely used LMS. The authors of those
hypermedia materials need to explore their options for
copyrighting them in a fashion that suits their needs and desires.
The Creative Commons project [30] provides a wealth of
information on copyrights.

5.3 Dissemination
If nobody knows about a tool, it will not be used. However, the
issue of making a tool known can include a variety of issues.
Registering it in appropriate repositories of learning materials,
and publishing results and other information in scientific and/or
educational forums is one thing to consider. Providing a
supporting web presence in which the authors include metadata
so that increasingly sophisticated search engines can gather
information about your tool, however, is also of increasing
importance. The latter is a more technical issue as it requires not
only ontologies to describe the content, but also metadata
formats to deliver the descriptions. Putting the material in an
XML format should help to address these issues.

5.4 Data Exchange Between the LMS and
Specialized Systems
The range of data that various LMSs could provide to your
system upon start-up is large. It could be as simple as a mere
token that identifies the learner using the system. However,
more likely it will include information about the learner's past
activities. Those past activities have, through the lesson
structure authored by the instructor in the LMS, ultimately led
to this particular learning exercise, which is now calling upon
the specialized resource. The degree to which a resource can
adapt itself to the contextual information it receives from the
LMS will become increasingly important. For example, a
resource may be given information indicating that the learner
has already demonstrated, from past activities, a "pretty good"
understanding of this topic, or it may be told that past activities
have indicated this learner is "completely lost." In such
situations, the system may be able to direct these learners to
different content that is better suited to their individual needs.
Conversely, when the learner has completed an activity with a
given system, there will probably be information that the system
must convey back to the LMS. For example, in our analysis of
the results collected from our survey, we noted that automatic
assessment is one of the features of LMSs most valued by the
educators. Consequently, if the system cannot carry out an
assessment of how well the learner fared in the activity and then
report the results of that assessment back to the LMS, its value
to the instructor is diminished. In some instances, the data

interchange involved in this assessment of the completed
activity may be relatively simple, for example, how many points
the learner scored out of a perfect score for the activity.
However, for other activities, this assessment data could be
quite complex, perhaps including a complete log of the learner's
interaction with the system during the activity.
Because the data interchanged between the LMS and the system
will become increasingly complex and important, standards are
emerging – and will continue to do so – regarding how the data
interchange should be done. For example, the Sharable Content
Object Reference Model (SCORM) [2] is a collection of
standards and specifications for web-based learning that has
begun to address these issues. Whether one should use a
standard as comprehensive as SCORM or develop a simpler
convention for data exchange protocols that are more uniquely
suited to the particular needs of an application is a factor that
system developers will have to consider. As such protocols for
interchanging this information mature, they will often be
represented in XML, and new programming APIs will emerge to
facilitate software development efforts in this regard.

5.5 Security
One particular challenge for LMSs is the development and
maintenance of an infrastructure for user authentication and
authorization. When the LMS and the corresponding integrated
modules are disseminated to other institutions, inter-
organizational authentication and authorization become an issue.
Fortunately, some local projects exist to solve this issue. For
example, the HAKA infrastructure (Federation) is a group of
organizations founded by Finnish universities and polytechnics
which cooperate in this area. The purpose of the Federation is to
support higher education and research institutions by developing
and maintaining an infrastructure for user authentication and
authorization. The TRAKLA2 system [84] is one of the services
that can be accessed through the HAKA authentication
mechanism. Any student in any Finnish university can use his or
her local account and password, provided by the home
university, to log into the system (as well as services of other
institutions that have joined the federation). The HAKA
infrastructure is entitled to collaborate also with cooperating
foreign federations, but we believe new initiatives are needed to
make the infrastructure available worldwide.

5.6 Internationalization and Customization
Developed tools should be designed to accept and produce
content in different languages. The graphical user interface and
user messages should be implemented in a way that different
languages can be used to display textual information. Java
property files or GetText tools can be used for that purpose. If
textual information from the user is processed, the tool should
be aware of different text encodings.
The survey results from Section 2 indicated that one of the
adoption blocks of current CALMSs is "missing, incorrect or
insufficient content". Thus, tools should provide ways for
teachers to create and customize material in the tool that will
match their other teaching materials, such as text books.

5.7 Compatibility Issues
The contents of the tool and the tool itself should be mapped to
existing teaching and learning resources, such as the ACM

inroads — SIGCSE Bulletin - 156 - Volume 40, Number 4 — 2008 December

curricular guidelines, Bloom’s taxonomy, the SOLO
learning.For example, ACM curricula can be used to break
down the content into meaningful topics that are universally
known. An instructor looking for new materials can then better
judge whether or not the material covers his or her needs.
Taxonomies can provide a way to rate the difficulty of the
exercises. This could help to construct adaptive learning
materials in which an exercise can be selected based on the
student's previous knowledge. For example, the difficulty of the
exercise can be lowered in terms of Bloom's taxonomy until the
student is able to solve the exercise. In addition, both the break-
down and the taxonomies can be used to label the metadata for
the material (see the other item below). The bottom line is that
the material should be in a form that attracts the instructors. This
also includes uniform terminology with existing text books that
the instructors already use. Customization is one issue that
needs to be taken into account, but if the tool already uses the
same conventions that the course text book does, it will be
easier to use.

5.8 Use Best Practices and Guides to
Develop Tools and Materials
Many products developed for CS education are potentially
valuable and technically sophisticated. However, they must also
be grounded in sound principles. Some of these principles come
from CS, but some other principles may also come from other
disciplines.
An example can be found in algorithm animations. There are a
number of sophisticated and powerful tools and systems
available, but they do not give hints about how to produce
educationally effective animations. Fortunately, we can find
several kinds of aids.
In the first place, we find “best practices”—recommendations
distilled from past experience, including successful and
unsuccessful experiences. Pedagogical visualization draws on
many related disciplines, including typography, psychology, and
algorithms. Consequently, some general recommendations can
be inherited from typography. However, most best practices
have been developed within the field of algorithm animation.
Naps et al. [99] summarize eleven general suggestions.
We may also find guidelines not only grounded in experience,
but also on theory. Velázquez-Iturbide et al. [145] warn that
recommendations can hardly be found about how to structure an
algorithm animation. Consequently, they develop a
"pedagogical guide" that gives advice on the following key
elements of algorithm animations: number of animations, size
and structure of each animation (including important steps of the
animation and level of detail in different stages of an
animation), and size and value of input data. The guide is
inspired by two different fields: computer science (mainly,
program testing) and human factors. Program testing principles
provide a basis for identifying the main elements of an
animation, whereas human factors are taken into account to
decide whether these elements are worth keeping or discarding.

6. EXAMPLE CALMS SCENARIOS
As discussed in previous sections, current general-purpose
LMSs do not adequately support some specific needs of CS
education. In particular, they do not incorporate CS-specific
learning activities that are successfully supported by specialized

CS education tools like those included in the Section 3. After
reviewing the aspects to be considered in building a CALMS in
Sections 4 and 5, we now give some scenarios of demonstrating
the kind of learning experiences we envision a CALMS should
support. These shall provide the final motivation for actually
building a CALMS, by outlining learning and teaching
possibilities that are usually difficult to achieve in most current
systems. Each Section will briefly describe the scenario, provide
a motivation and a proposed solution, followed by a discussion.

6.1 Systematic Assessment
Scenario: Incorporate a systematic assessment capability within
an LMS, which allows assessment by the student, the instructor,
peers, and automatic tools, to be applied to all assessment
activities for a learning unit.

Motivation: Assessment of student performance is one of the
most critical functions of LMSs according to the survey
conducted by this working group (see Section 2).
Popular LMSs offer several forms of assessment, including
automatic assessment, instructor assessment, peer assessment,
and self-assessment [7, 84, 87]. Alas, assessment functionality is
usually developed on an ad-hoc basis and varies from activity to
activity. In Moodle, for example, quizzes permit only automatic
and instructor assessment, while forums allow only peer
assessment (see the extended Moodle example in Table 1).
This is a problem because it makes it difficult, if at all possible,
to implement systematic assessment across all activities in
experimental or production courses.

Proposed Solution: Integrate systematic assessment
functionality into each CALMS activity (see Table 2). Note that
automatic assessment can incorporate plagiarism detection in all
activities, and that all forms of assessment can provide grading.

Table 1. Existing assessment functionality in Moodle

Activity /
Assessment

Automatic Instructor Peer Self

Quiz

Assignment

Forum

Workshop

Database

Table 2. Proposed systematic assessment functionality

Activity /
Assessment

Automatic Instructor Peer Self

Quiz Possibly
add

Add

Assignment Add Possibly
add

Add

Forum Add Add Add

Workshop Possibly add

Database Add Add Add

inroads — SIGCSE Bulletin - 157 - Volume 40, Number 4 — 2008 December

Discussion: Self-assessment of quizzes can be particularly
beneficial for essay and file-submission questions. Peer
assessment of quizzes and assignments can be beneficial, but it
may create logistic problems in practical courses with students
who are late with their submissions. Automatic assessment of
Moodle workshops may be beneficial, but its design and
implementation can be a serious challenge due to the inherent
complexity of workshops.
For e-learning researchers, systematic assessment functionality
will permit experimental investigation of the pedagogical
potential of innovative assessment techniques, such as self-
assessment of quizzes or automatic assessment of assignments.
For course designers, systematic assessment will open
opportunities for implementing assessment procedures that save
instructor time and increase student motivation.

6.2 Automatic Assessment of Programming
Exercises
Scenario: Combine LMS, peer reviewing, and automatic
assessment of programming exercises.

Motivation: When doing a peer review of programming
assignments, the reviewers should be able to view some of the
results of automatic assessments, so that they do not have to
comment on breaches of prescribed programming styles or
conventions. They can then use feedback from the automatic
assessments and focus a deeper discussion on other aspects,
such as design issues.
Students only have to use a single system (instead of multiple
tools)—they have a “one-stop-shop” for accessing the learning
material, submitting their solutions to programming assignments
and performing the peer review. A similar statement holds for
the teachers. The specialized learning management systems
described in Section 3.3 only provide automatic assessment, but
not peer reviews of the submitted systems.
User management only has to be done for a single system, and
students do not have to register multiple times.

Proposed Solution: Incorporate an assignment management
system as part of the CALMS, which allows for the creation of
assignments with defined automatic assessment procedures
and/or peer review.
Discussion: Superficially, this may appear to be a simple
problem. However, development of LMSs, automatic
assessment tools (such as CourseMarker [55] or BOSS [65]) and
peer assessment tools (such as WebPA [149], Bess [18] and
CAP [32]) have progressed in parallel, and integration has not
taken place. Each such tool duplicates, in part, the content
management functionality of an LMS. Principal reasons for this
include differences in the underlying data storage requirements
and in the technologies used to develop the tools, and the closed
nature of some LMSs, which inhibits detailed development
work from taking place. Moreover, tools which work with a
given programming language, such as Java, may not be
modified easily to work with other languages, preventing wide
adoption of the tool. A further issue is the uptake of tools within
the academic community—although various assessment tools
are in use, there are different approaches to automatic

assessment, and the pedagogies have not yet been evaluated in
any detail.
The lack of integration has a further consequence. Since the
code base for each of these assessment tools is large, the effort
required to extend the tool to include further pedagogical
benefits, such as support for different learning styles, is also
high.
A well-designed integrated environment will provide a
framework for developing educationally rich tools that will also
allow for easy deployment and effective evaluation. In the
context of Computer Science, a further benefit would be the
simplification of support for multiple programming languages
and paradigms.
A good realization of this scenario can also touch upon several
of the pedagogical aspects discussed in Section 4: it concerns
the instructional process (see Figure 1), can raise the students’
motivation (see Section 4.1.5), and offers collaborative learning
(Section 4.1.6).

6.3 Collection of Assessment Results
Scenario: Support the incorporation of assessment materials,
and the results of the interactions of students with these
materials, into the LMS data store. This requires an API that
enables the creation of new tools or the integration of
established tools into the LMS.

Motivation: There are numerous tools that provide assessments
of various kinds. Examples include JHAVÉ [97], which allows
the author of a program visualization to ask questions of the
student at each step of the visualization, and TRAKLA2 [84],
which administers exercises relating to data structures and keeps
track of how many exercises the student has correctly
completed. The problem is that an LMS is not able to provide
information to the tool to guide the authoring of exercises for
students.

Proposed Solution: Produce an API (application programmer
interface) for each pedagogical tool that provides some metadata
for the LMS and describes its input and output, and provide a
plug-in for the LMS that supplies appropriate input and also
records the resulting output consistently with the other data the
LMS maintains about each student. Input to a tool might consist
of some authoring information. Output would describe results of
the assessments.

Discussion: There would be a substantial one-time effort
required, since tool builders and LMS developers would need to
collaboratively design and implement APIs.

6.4 Adapting to Teaching and Learning
Styles
Scenario: Include a facility for content delivered within an
LMS to adapt to students' learning styles.

Motivation: According to learning style theory (Section 4.1.4),
students can be classified on a variety of scales, for example
active vs. reflective, sensing vs. intuitive, visual vs. verbal and
sequential vs. global. In practice, most learners' preferred styles
do not fall exclusively into just one of these categories; rather,
each learner adheres to a combination of the characteristics of
the different learning styles. On the other end, instructors can

inroads — SIGCSE Bulletin - 158 - Volume 40, Number 4 — 2008 December

strive to choose a mixture of teaching styles that provide the
best possible match to their students' learning styles.
According to the survey conducted by this working group (see
Section 2), current mainstream LMSs are rigid and difficult to
adapt to one's preferred teaching style. In addition, LMSs lack
the capability to flexibly adapt to each student's learning
preferences.

Proposed Solution: Systematically extend LMSs with learning
and teaching style capabilities.

Discussion: Recent research on adaptive hypermedia has been
addressing the need for adaptation in learning environments.
One proposed system [143] is able to rearrange the order of
pages (potentially also dropping individual pages, which are
determined to be inappropriate for the given learner). However,
experimental use of this approach has shown that the reshuffling
of pages, while comparatively easy to do mechanically,
becomes highly difficult to support for the content author. The
reason for this is that in a simplified model, the author will not
know which pages(s) the learner has read when they access a
given page, making it very difficult to ensure that all relevant
previous knowledge has been presented to the learner, or that
the learner is spared from tedious repetitions of already known
materials.
Instead of this simple reshuffling, more complex reordering may
include pedagogical links between pages, for example to specify
that page A explains the details of page B, or that page C has to
come before page D. In this case, the system can infer a partial
ordering of the materials to better ensure that what the given
student can see makes sense.
The L4 system [1] provides a strategy editor, which allows the
content author of a given course to specify such partial
orderings and relationships between course entries.
Additionally, it also provides a strategy template editor, with
which the author can specify a template of which elements a
course using the concrete template should have. For example, a
template for visual learners could prescribe that the materials
always start out with a (hopefully inspiring or thought-
provoking) image or video about the topic under discussion,
followed by a definition and an example with another visual
element.
Another system, called SHALEX (Structured Hypermedia
Algorithm Explanation) [68, 135], addresses several of the
aforementioned problems. It provides novel features, such as
reflection of the high-level structure of an algorithm and support
for programming the algorithm in any procedural programming
language. By defining the structure of an algorithm as a directed
acyclic graph of abstractions, algorithms may be studied top-
down, bottom-up, or using a mix of the two. It is also possible to
support several levels of abstractions, which help the learner
understand basic properties of an algorithm as well as to
recognize good implementation strategies. Moreover, SHALEX
supports many algorithms by using a taxonomy of explanations,
which has a tree-like structure. Non-leaf nodes of the taxonomy
represent concepts, such as "iterative algorithms" (the root of the
tree represents the set of all algorithms). Leaves represent
explanations of specific algorithms created by specific authors.
An alternative approach is to provide less flexibility in the pages
themselves, and simply write multiple views of the materials for

different target audiences. For example, Ross' hypertextbook
Snapshots on the Theory of Computing [121] offers three
different routes through the learning materials, geared for
beginning, intermediate, and advanced students. A similar
approach could be taken for more visually-oriented students or
students who learn better from examples than from definitions.

6.5 Tools That Specialize Generic Tools to
Programming
Scenario: Connect an integrated development environment
(IDE) to an LMS via a plug-in.

Motivation: One principle for choosing the tools to be used in a
course is to pick tools that are used in the real world. Currently,
in programming, such tools include integrated program develop-
ment environments (IDEs). Generic LMSs suffer from the lack
of access to such programming environments.

Proposed Solution: Ensure integration of IDEs into LMSs that
enable communication flow in both directions (from the LMS to
the IDE and vice versa). Several IDEs, BlueJ [13] and Eclipse
[43] in particular, allow plug-ins, extensions that increase the
IDE's functionality.

Discussion: A scenario like this would enhance several of the
tools found in a typical LMS:

• Tracking of student activity. At present, students typically
switch out of an LMS to do their programming; activity
done in an independent IDE is invisible to the LMS and
thereby inaccessible for the purposes of gathering data
about student learning. Important information to be
recorded would include movement from one program
component to another (e.g., to gauge student strategies for
program understanding) and program edits and compiles
(e.g., to detect episodes of counterproductive programming
behavior [63] or to monitor application of test-driven
development).

• Collaboration and peer review. LMS events can structure a
pair-programming activity, reminding students of their
designated roles. A student reviewing a classmate's code
may wish to run the program; with an IDE immediately
accessible, it would be easy to do this and record the
results. An IDE would also enable review comments to be
more structured, e.g., via automatic linking to program
components (methods or variables). The program
GREWPtool [54] is an IDE that allows pair
programming—collaborative coding. It has proven to be
valuable in a variety of class activities involving interaction
among students and between students and instructor.

Other tools, once coupled with an LMS, could significantly
enhance the experience of learning to program. Some examples
include the following:

• A utility that intercepts compiler error messages and
translates them into more understandable information.
Two examples are Expresso [61] and DChk [36]. Both
are currently implemented as preprocessors to a
standard Java compiler. The authors of DChk mention
upcoming efforts to integrate it into Eclipse.

• More ambitious tools that maintain a model of the
user and function as personal tutors. Two examples

inroads — SIGCSE Bulletin - 159 - Volume 40, Number 4 — 2008 December

are Java Critiquer [112] and JITS (Java Intelligence
Tutoring System) [141].

• An editor not only for code but for higher-level
constructs, such as goals or plans as implemented in
the GPC (Goal/Plan/Code) Editor developed by Elliot
Soloway and his colleagues [137].

6.6 Integration with Visualization
Scenario: Incorporate algorithm visualization tools into an
LMS.

Motivation: As stated by one of our survey respondents, there is
usually no support for integration of AV into LMSs. On the one
hand, the features that the respondent missed in most AV tools
included integration with the maintenance of student grades and
import/export with the university's registration software. These
are all features that LMSs are supposed to provide. On the other
hand, the respondent also missed features such as automated
assessment and feedback on exercises involving AV. However,
general purpose LMSs have very limited assessment capabilities
with respect to their interaction with AV. For example,
JHAVÉ's pop-up questions and MatrixPro's visual simulation of
an algorithm's execution are something that cannot be done
without a special purpose AV tool. Thus, we believe the future
trend will be to integrate AV tools to LMSs in such a way that
the enhanced system can seemingly provide all the features
through a single system.
Let us assume that a student could get a deeper understanding of
the working and behavior of finite automata with the help of an
explorative visualization. The visualization offers the visual
generation of a finite automaton in the form of a transition
diagram on the basis of a regular expression that can be entered
by the student. Furthermore, the student can enter an input word
for the generated finite automaton to watch its acceptance
behavior. The GaniFA tool [38, 40] is an example of such an
AV system. An LMS can be used by the student for learning the
fundamentals, such as the definition of regular expressions, the
algorithm for generating a transition diagram from a regular
expression, and so forth. The challenge is how to combine these
two worlds effectively.
Current AV tools, as described in Section 3.4 and 3.5, are more
or less stand-alone systems, such as GaniFA or JFLAP [118].
Their integration into an LMS is done by adding a link that
starts the visualization, for example in a separate window. When
should the LMS offer the student such a link? The student must
have a basic understanding about the fundamentals. Only then
can they profit from using the AV tool. Conversely, how can we
measure the learning progress during the exploration of the
visualization? This information should be communicated back
to the LMS by the AV. To the best of our knowledge, those
functionalities are not offered by current LMSs.

Proposed Solution: Enforce integration of algorithm/program
visualizations into LMSs that support assessment and
communication flow in both directions, that is, from the LMS to
the AV tool and vice versa. Regarding the lower levels of
Bloom's taxonomy, as described in Section 4.1.3, the LMS
could help assess the student's abilities at the lower levels of the
taxonomy to determine if they had appropriately mastered
things like the basic definitions involved in a finite state
automaton. Such mastery would be considered a prerequisite for

further investigations with the visualizations to achieve
understanding at higher levels of Bloom’s taxonomy. Here,
several assessment strategies are possible, as described in
Section 6. Depending on the assessment results, the AV system
could show simpler or more advanced examples, or it could be
used for "what-if" exploration if the student has a good
knowledge about the topic. In our example about the
fundamentals of regular expressions and finite automata, this
last issue would mean that the student could "play" with the
visualization generation, taking it in directions that may well
lead to their discovering new knowledge about the topic. The
AV tools support their efforts to try out new ideas, to develop
"unusual" automata satisfying particular criteria and to verify
whether their hypotheses work [67].
The AV tool analyzes the student’s behavior while interacting
with the visualization or animation. This information is
communicated to the LMS in order to add it to the learning
model of the current student. In this way, both worlds are
successfully combined from an educational perspective.

Discussion: A scenario like this clearly improves upon the
current situation in which the LMS and the AV tool do not talk
to each other. Such communication between the two tools would
not only help to improve the learning success of AV/PV
systems, but it would also influence the acceptance of AV tools.
As we have stated before, the data interchanged between the
LMS and an AV system will become increasingly complex and
important, and thus standards will continue to emerge. They will
also allow different AV tools to communicate with each other,
and better adapt to the different needs of the learner. Thus,
integration not only solves the problems pointed out by the
educators, but also opens up new research questions such as
how to make the interconnection of different AV tools possible,
what kind of data should be interchanged, and how this
information can be utilized to create adaptive learning
environments. Initiatives for joining systems already exist (see
for example the one to join Jeliot 3 and Moodle [91]). Jeliot 3 is
also being integrated to CUMULATE [153], a centralized online
user model that provides interfaces to store user activity from
different learning applications and to send reports back to the
different applications.

6.7 Support for Drill-and-Practice
Scenario: Integrate problem generator and automatic
assessment with an LMS.

Motivation: Drill-and-practice exercises are common in the first
stages of learning any given topic. These exercises do not
require creativity, but only understanding of the topic. In terms
of Bloom's taxonomy, the student must understand the concepts
or methods in the lecture, and must be able to apply them to
solve problems. In some fields, these exercises are the primary
source of learning, especially in those involving psychomotor
skills.
Drill-and-practice exercises also pose risks when not planned
adequately. First, students may learn these problems by rote if
very few are available. Second, plagiarism may discourage
students. Third, lack of feedback can discourage students if they
often fail and do not receive assistance to improve. Finally,
several levels of difficulty are important to keep good students
motivated as they improve.

inroads — SIGCSE Bulletin - 160 - Volume 40, Number 4 — 2008 December

LMSs support drill-and-practice by allowing the teachers to
store exercises and automatically assess them. Once the lecture
content has been delivered, students may work with the given
concepts or methods by means of a number of simple exercises,
probably in increasing degree of difficulty. However, lack of the
features cited in the previous paragraph makes this support very
rudimentary. Generation of problems, feedback, and adaptation
to the student level are important features to maintain and even
increase motivation and to discourage plagiarism.
For instance, consider a course on introductory programming.
Once the syntax of expressions and statements in a
programming language has been presented, the students are
given exercises. In each exercise, they are requested to provide a
missing statement or expression, after which the correct
execution of the program is assessed.

Proposed Solution: Provide several tools: a problem generator,
possibly a visualization tool, and an automatic assessment tool,
that are incorporated into an LMS which records the results.

Discussion: A problem generator is needed to deliver different
problems to the students. The generator would generate semi-
random instances of the specification, adjusted so that trivial,
very large or meaningless cases are not generated. The generator
could even be adjusted to the student’s expertise or learning
style (Section 4.1.4). Depending on the problem, an auxiliary
tool can be available to the student to better analyze the problem
or to perform mundane tasks. For instance, for some problems,
it can be useful to generate automatic visualizations in order to
better comprehend them. Finally, an automatic assessment
system could be in charge of assessing the answers and, if an
answer is wrong, giving proper feedback to the student to raise
their motivation (Section 4.1.5), and recording the results into
the LMS.
Examples of tools that currently implement some of this
scenario include, for example, Kumar’s problets [73].

6.8 Support for Complex Construction
Problems
Scenario: Include into an LMS support for developing compre-
hensive programs that require student creativity.

Motivation: As students become more experienced in a given
topic, they could be exposed to more complex problems.
Solving these problems would require applying given concepts
or methods with some creativity. In terms of Bloom's taxonomy,
the student would need to synthesize a product.
Problems can also be classified as open or closed. The former
give flexibility to the student, whereas the latter impose
restrictions, for example on the method to apply. It is interesting
to note that this kind of open problem is the most common form
of assignment in programming courses. In effect, given a
problem specification in a natural language, illustrated with
some examples, a working program that solves the problem
must be coded.
Solving these complex problems requires the use of tools
specific to the discipline to assist in the creation task. There are
two reasons for this. First, the solution is typically required in a
given format. In the case of programming, code is the most
common format, but other formats are sometimes required
(diagrams, testing documentation, etc.). Second, solving a non-

trivial problem is simplified if auxiliary tools are provided. For
instance, a compiler and debugger are the typical tools for
programming. All of these needs are typically satisfied by using
an IDE or an equivalent computing environment.
An example that can be solved as an open or a closed
programming assignment follows. Given an (inefficient)
multiple recursive algorithm with redundancies, develop an
(efficient) iterative algorithm with no redundant computation.
There are amenable methods to be applied, although some
creativity is typically demanded from the student.

Proposed Solution: An LMS could support this kind of task by
providing one or more specific tools to construct solutions. A
generic IDE is the obvious solution for programming
assignments, as described in Section 6.5. In other cases, such as
the example given, the synthesis may be guided. In this case,
additional tools may restrict or guide the student in successive
phases, such as a wizard to navigate through successive phases
of program transformation. In turn, this wizard could give
access to visualization facilities to automatically display the
behavior of the product at each stage. The choice of the concrete
tool may also take the user’s previous activities into account,
based on the information gathered from tracking activities
(Section 4.1.8.3), and may adapt the presentation according to
the user’s learning style (Section 4.1.4).

Discussion: LMS support can be enriched even further by
widening its educational context. Thus, the assignment can be
linked to an automatic assessment system. Furthermore,
synthesis can be made collaboratively. In this case, a
programming assignment would require collaborative support
for editing, discussion, voting, and version management.

6.9 Enriching Augmented Learning
Scenario: Combine improved presence teaching with features of
online learning environments, where “presence teaching” refers
to traditional teaching as opposed to online or distance learning
situations.

Motivation: Systems for face-to-face augmented learning (as
discussed in Section 3.2) are geared to provide a rich
environment inside the lecture, as well as recordings of the
lecture itself. However, other interesting elements of the lecture
are not supported outside the lecture, such as in a mobile setting
(Section 4.2). For example, content visualizations shown during
the presentation are not available in the learning environment
under the learner's control, but simply as part of a video
recording. This should provide a richer learning environment for
students who attended the lecture and want to rehearse parts of
it, as well as for those who could not attend the lecture.

Proposed Solution: By merging aspects of augmented learning
and online learning environments, students and teachers can use
a far richer environment for activities outside the lecture room.
This environment would contain both the lecture materials, as a
collection of multimedia including, for example, slides, video
recordings and podcasts. This is already offered by many
augmented learning systems. In addition, the expressiveness of
an LMS can offer features that would include the following.

• Interactive events happening during the lecture. These
might include submitted questions, which could be
placed in a forum or other appropriate element inside
the LMS (such as a wiki or blog). This way, students

inroads — SIGCSE Bulletin - 161 - Volume 40, Number 4 — 2008 December

can read the questions asked during the lecture, and
see the lecturer's (or other students') answers to the
questions.

• Comments made by the students. These might include
personal annotations or information about typos or
other errors, and should be annotated to the
appropriate slide and be available to the students
themselves. Again, this is best done in integration
with an LMS that hosts the materials and knows about
the participants (see Section 4.2 for the related issue
of tracking student activities). The eMargo system
[134] offers a mode for commenting individual slides
with public discussion entries and private notes; an
integration of this functionality with Moodle is
currently ongoing.

• Interactive demonstrations. These might include
algorithm or program visualizations (see Section 3.4
and 3.5), and could be made available to the students
to run separately anytime after the lecture. Instead of
only watching the contents in the video—with a lack
of control and no way to adapt the presentation speed
to personal needs—the student could run the same
content as the teacher presented. A prototype system
called AFFE [51] performs this job and publishes all
presented entries on a web page, where students can
directly run them using Java WebStart. However, this
feature becomes more interesting if it is integrated
into the learning environment that hosts the other
learning materials for the course.

Discussion: The proposed integration of augmented learning
with online learning environments provides a seamless
transition from lectures to online learning. As opposed to
distance learning, both students present at the lecture (taking
notes or asking questions), and students who for one reason or
another are absent can benefit from the scenario. By combining
everything that happened during the lecture with activities
outside the lecture, we bridge the gap between presence and
distance education, and potentially provide substantial internal
motivation for the students.
A concern here is that if all rich lecture content is available
outside the lecture, student attendance might drop.
To address student concerns with privacy and both funny and
stupid responses to questions, entries may be posted with the
student's (LMS) identity hidden. A prototype of the TVremote
system [10] offers this functionality by proving a FAQ webpage
of the teacher-selected most relevant questions. However, this
feature is not yet integrated into any LMS.

7. SUMMARY AND CONCLUSIONS
We have discussed the state of the art of learning resources
within computer science education and their relationship with
learning management systems. We have reported the results of a
survey of educators that highlights some of the current
deficiencies of such systems, and have also identified a number
of educational technologies and tools that are under
development within the computer science community. Based on
those observations, and informed by basic pedagogical
principles that relate to the delivery of computer science at the
higher education level, we have presented guidelines that are

appropriate for use by software developers integrating novel
technologies into an LMS, thereby turning them into a CALMS.

We have also presented a collection of scenarios that represent
enhancements to current learning management systems by
incorporating novel computer science education technologies.
With reference to our guidelines, we have discussed how these
would improve the learning and teaching process.

There is no significant technical obstacle to the incorporation of
any of the tools or technologies we have surveyed into current
LMSs. The challenge is to engage the integration process in
such a way that the enhanced CALMS will deliver enriched
educational benefits effectively and efficiently.

We have not provided any formal pedagogical or software
design patterns—these will be the subject of future work. Nor
have we addressed detailed technical issues—a variety of
interoperability technologies is available, including the use of
plug-ins and standardized APIs, and these are yet to be
developed.

If our vision of technical integration takes place, new
pedagogical models will emerge. For example, the possibility of
real-time automatic assessment within a CALMS supported
classroom environment would offer exciting new educational
opportunities.

Finally, we intend to provide a website that will host resources
to support the integration of CS educational tools with current
(Open Source) LMSs.

8. REFERENCES
[1] Abbing, J. and Koidl, K. Template Approach for Adaptive

Learning Strategies. Workshop Proceedings of the
Adaptive Hypermedia 2006 (AH 2006), Dublin, Ireland
(2006).

[2] Advanced Distributed Learning. SCORM 2004, 3rd
Edition. http://www.adlnet.gov/scorm/ (2007).

[3 Aiken, A. Moss: A System for Detecting Software
Plagiarism. http://theory.stanford.edu/~aiken/moss/ (2006).

[4 Akingbade, A., Finley, T., Jackson, D., Patel, P. and
Rodger, S. H. JAWAA: easy web-based animation from
CS 0 to advanced CS courses. Proceedings of the 34th
SIGCSE Technical Symposium on Computer Science
Education (Reno, Nevada, USA). ACM Press, New York,
NY, USA, 2003, 162-166.

[5] Alexander, C., Ishikawa, S. and Silverstein, M. A Pattern
Language: Towns, Buildings, Construction. Oxford
University Press, 1977.

[6] Anderson, J. R. Cognitive psychology and its implications.
W.H. Freeman, 1985.

[7] Anderson, L. W., Krathwohl, D. R., Airasian, P. W.,
Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., Raths, J.
and Wittrock, M. C. Eds. A taxonomy for learning and
teaching and assessing: A revision of Bloom's taxonomy of
educational objectives. Addison-Wesley, 2001.

[8] Anthony, D. Patterns for classroom education. Pattern
Languages of Programs, PLoP’95. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1996,
391 - 406.

inroads — SIGCSE Bulletin - 162 - Volume 40, Number 4 — 2008 December

[9] Bailey, T. and Forbes, J. Just-in-Time Teaching for CS0.
Proceedings of the 36th SIGCSE Technical Symposium on
Computer Science Education (St. Louis, MO, USA). ACM
Press, New York, NY, USA, 2005, 366-370.

[10] Bär, H., Häußge, G. and Rößling, G. An Integrated System
for Interaction Support in Lectures. Proceedings of the 13th
Conference on Innovation and Technology in Computer
Science Education (Dundee, Scotland, UK). ACM Press,
New York, NY, USA, 2007, 329.

[11] Bär, H., Rößling, G., Köbler, S. and Deneke, M. Evaluation
of Digital Interaction Support in a Large Scale Lecture.
Proceedings of the IADIS International Conference on
Applied Computing. IADIS Press, Lisbon, Portugal, 2005,
63-67.

[12] Bär, H., Tews, E. and Rößling, G. Improving Feedback and
Classroom Interaction Using Mobile Phones. Proceedings
of Mobile Learning 2005. IADIS Press, Lisbon, Portugal,
2005, 55-62.

[13] Barnes, D. J. and Kölling, M. Objects First with Java. A
Practical Introduction using BlueJ. Prentice Hall, 2006.

[14] Bergin, J. A Pattern Language for Initial Course Design.
Proceedings of the 33rd SIGCSE Technical Symposium on
Computer Science Education (Charlotte, North Carolina,
USA). ACM, New York, NY, USA, 2001, 282-286.

[15] Bergin, J., Eckstein, J., Manns, M. L. and Sharp, H.
Feedback Patterns. http://www.jeckstein.com/pedagogical-
Patterns/feedback.pdf

[16] Bergin, J., Eckstein, J., Manns, M. L. and Sharp, H.
Patterns for Active Learning.
http://www.jeckstein.com/pedagogical-
Patterns/activelearning.pdf

[17] Bergin, J., Manns, M. L., Marquardt, K., Eckstein, J. and
Sharp, H. Patterns for Experiental Learning.
http://www.jeck-
stein.com/pedagogicalPatterns/experientiallearning.pdf

[18] Bess. Bess Peer Assessment Software.
http://sourceforge.net/ projects/bess

[19] Biggs, J. and Collis, K. Evaluating the Quality of Learning:
The SOLO Taxonomy. Academic Press, New York, 1982.

[20] Bloom, B. S. The Taxonomy of Educational Objectives:
The Classification of the Educational Goals. Longman
Group Ltd, 1956.

[21] Bruner, J. The Culture of Education. Harvard University
Press, Cambridge, MA, 1996.

[22] Budd, T. An Active Learning Approach to Teaching the
Data Structures Course. Proceedings of the 37th SIGCSE
Technical Symposium on Computer Science Education
(Houston, Texas, USA). ACM Press, New York, NY, USA,
2006, 143-147.

[23] Bull, S. and Reid, E. Individualised Revision Material for
Use on a Handheld Computer. In Attewell, J. and Savill-
Smith, C. Eds. Learning with Mobile Devices: Research
and Development 2004. Learning and Skills Development
Agency, London, UK, 2004, 35-42.

[24] Carle, A., Canny, J. and Clancy, M. PACT: An Annotated
Course Tool. Proceedings of ED-MEDIA 2006. AACE
Press, Charlottesville, VA, USA, 2006, 2054-2060.

[25] Carle, A., Clancy, M. and Canny, J. Working with
pedagogical patterns in PACT: initial applications and
observations. SIGCSE Bulletin, 39, 1 (2007), 238-242.

[26] Carter, J., AlaMutka, K., Fuller, U., Dick, M., English, J.,
Fone, W. and Sheard, J. How shall we assess this? SIGCSE
Bulletin, 35, 4 (2003), 107-123

[27] Clancy, M., Titterton, N., Ryan, C., Slotta, J. and Linn, M.
New roles for students, instructors, and computers in a lab-
based introductory programming course. SIGCSE Bulletin,
35, 1 (2003), 132-136.

[28] Cogliati, J. J., Goosey, F. W., Grinder, M. T., Pascoe, B.
A., ROSS, R. J. and Williams, C. J. Realizing the promise
of visualization in the theory of computing. Journal of
Educational Resources in Computing, 5, 2 (2005), 5.

[29] Cole, J. and Foster, H. Using Moodle: Teaching with the
Popular Open Source Course Management System.
O'Reilly, 2007.

[30] Creative Commons Project. http://creativecommons.org
(2008).

[31] Dann, W., Cooper, S. and Pausch, R. Learning to Program
with Alice. Prentice Hall, 2006.

[32] Davies, P. Peer-Assessment: Judging the quality of student
work by the comments not the marks? Innovations in
Education and Teaching International (IETI), 43, 1 (2006),
69-82.

[33] Davis, E. A. and Linn, M. C. Scaffolding Students’
Knowledge Integration: Prompts for Reflection in KIE.
International Journal of Science Education 22, 8, (2000),
819–837.

[34] Dearden, A. and Finlay, J. Pattern Languages in HCI: A
Critical Review. Human-Computer Interaction, 21, 1
(2006), 49-102.

[35] Demetrescu, C., Finocchi, I. and Stasko, J. T. Specifying
Algorithm Visualizations: Interesting Events or State
Mapping? Revised Lectures on Software Visualization,
International Seminar. Springer-Verlag, London, UK,
2002, 16-30.

[36] Depradine, C. and Gay, G. Active participation of
integrated development environments in the teaching of
object-oriented programming. Computers & Education, 43,
3 (November 2004), 291-298.

[37] Diehl, S. Ed. Software Visualization. Springer, Heidelberg,
2002.

[38] Diehl, S., Görg, C. and Kerren, A. Animating Algorithms
Live and Post Mortem. In Diehl, S. Ed. Software
Visualization; LNCS State-of-the-Art Survey. Springer,
2002, 46-57.

[39] Diehl, S. and Kerren, A. Reification of Program Points for
Visual Execution. Proceedings of the First IEEE
International Workshop on Visualizing Software for
Understanding and Analysis (VisSoft '02). IEEE
Computing Society Press; IEEE, Paris, France, 2002, 100-
109.

[40] Diehl, S., Kerren, A. and Weller, T. Visual Exploration of
Generation Algorithms for Finite Automata.
Implementation and Application of Automata; Lecture

inroads — SIGCSE Bulletin - 163 - Volume 40, Number 4 — 2008 December

Notes on Computer Science, LNCS 2088. Springer, 2001,
327-328.

[41] Dunbar, K. How scientists really reason: Scientific
reasoning in real-world laboratories. In Sternberg R. J.,
Davidson J. Eds. Mechanisms of insight. MIT Press,
Cambridge MA, 1995, 365-395.

[42] Dunn, R. and Dunn, K. Teaching Students through their
Individual Learning Styles: A Practical Approach.
Prentice-Hall, Reston, VA, 1978.

[43] Eclipse Foundation. Eclipse. http://www.eclipse.org
[44] Edwards, S. H. Improving student performance by

evaluating how well students test their own programs.
Journal of Educational Resources in Computing, 3, 3
(2003), 1.

[45] Felder, R. M. and Silverman, L. K. Learning and Teaching
Styles in Engineering Education. Engr. Education, 78, 7
(1988), 674-681.

[46] Friedland, G., Knipping, L., Rojas, R. and Tapia, E.
Teaching with an intelligent electronic chalkboard. ETP
'04: Proceedings of the 2004 ACM SIGMM workshop on
Effective telepresence. (New York, NY, USA). ACM
Press, New York, NY, USA, 2004, 16-23.

[47] Fuller, U., Johnson, C. G., Ahoniemi, T., Cukierman, D.,
Hernan-Losada, I., Jackova, J., Lahtinen, E., Lewis, T. L.,
Thompson, D. M., Riedesel, C. and Thompson, E.
Developing a computer science-specific learning
taxonomy. SIGCSE Bulletin, 39, 4 (December 2007), 152-
170.

[48] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Longman Publishing Co., Inc., 1995.

[49] Gardner, H. Multiple Intelligences: The Theory in Practice.
Basic Books, 1993.

[50] Griswold, W. G. and Simon, B. Ubiquitous presenter: fast,
scalable active learning for the whole classroom.
Proceedings of the 11th Conference on Innovation and
Technology in Computer Science Education. (Bologna,
Italy). ACM Press, New York, NY, USA, 2006, 358-358.

[51] Häußge, G. Flexible Verteilung und einheitliche Bedienung
von interaktiven Visualisierungen. Proceedings der Pre-
Converence Workshops der 5. e-Learning Fachtagung
Informatik DeLFI 2007. (Siegen, Deutschland). Logos
Verlag, Berlin, Germany, 2007, 85-92.

[52] Henriksen, P. and Kölling, M. Greenfoot: Combining
Object Visualisation with Interaction. OOPSLA '04:
Companion to the 19th annual ACM SIGPLAN conference
on Object-oriented programming systems, languages, and
applications (Vancouver, BC, Canada). ACM Press, New
York, NY, USA, 2004, 73-82.

[53] Hernán-Losada, I., Velázquez-Iturbide, J. Á and Lázaro-
Carrascosa, C. A. Programming learning tools based on
Bloom's taxonomy: proposal and accomplishments.
Proceedings of the 8th International Symposium of
Computers in Education (SIIE 2006). (Leon, Spain,
October 24-26). 2006, 325-334.

[54] Hickey, T. J., Langton, J. and Alterman, R. Enhancing CS
programming lab courses using collaborative editors. J.
Comp. Sci. in Colleges, 20, 3 (February 2005), 157-167.

[55] Higgins, C., Hegazy, T., Symeonidis, P. and Tsintsifas, A.
The CourseMarker CBA System: Improvements over
Ceilidh. Education and Information Technologies, 8, 3
(2003), 287-304.

[56] Hillside Group. http://hillside.net
[57] Hine, N., Rentoul, R. and Specht, M. Collaboration and

Roles in Remote Field Trips. In Attewell, J. and Savill-
Smith, C. Eds.Learning with Mobile Devices: Research
and Development 2004. Learning and Skills Development
Agency, London, UK, 2004, 69-72.

[58] Holmes, N. The Craft of Programming. IEEE Computer,
41, 5 (2008), 90-92.

[59] Hoyles, C., Healy, L. and Schutterland, R. Patterns of
discussion between pupil pairs in computer and non-
computer environments. Journal of Computer-Assisted
Learning, 7(1991), 210-226.

[60] Hoyles, C. and Shutterland, R. Logo mathematics in the
classroom. Routledge, London, 1989.

[61] Hristova, M., Misra, A., Rutter, M. and Mercouri, R.
Identifying and correcting Java programming errors for
introductory computer science students. Proceedings of the
34th SIGCSE Technical Symposium on Computer Science
Education. (Reno, NV, USA). ACM Press, New York, NY,
USA, 2003, 153-156.

[62] IMC Advanced Learning Solutions. The fast track to e-
learning content: LECTURNITY, the award-winning Rapid
Authoring Tool. http://www.lecturnity.
de/en/products/lecturnity.

[63] Jadud, M. C. Methods and tools for exploring novice
compilation behavior. ICER 2006: Proceedings of the 2006
International Workshop on Computing Education Eesearch.
(Canterbury, Kent, UK). ACM Press, New York, NY,
USA, 2006, 73-84.

[64] Joy, M. and Luck, M. Plagiarism in Programming
Assignments. IEEE Transactions on Education, 42, 1
(1999), 129-133.

[65] Joy, M., Griffiths, N. and Boyatt, R. The boss online
submission and assessment system. Journal of Educational
Resources in Computing, 5, 3 (2005), 2.

[66] Karavirta, V., Korhonen, A., Malmi, L. and Stalnacke, K.
MatrixPro - A Tool for On-The-Fly Demonstration of Data
Structures and Algorithms. In Korhonen, A. Ed.
Proceedings of the Third Program Visualization Workshop.
(Coventry, UK). The University of Warwick, UK, 2004,
26-33.

[67] Kerren, A. Generation as Method for Explorative Learning
in Computer Science Education. Proceedings of the 9th
Conference on Innovation and Technology in Computer
Science Education (ITiCSE '04). (Leeds, UK). ACM Press,
New York, NY, USA, 2004, 77-81.

[68] Kerren, A., Müldner, T. and Shakshuki, E. Novel
Algorithm Explanation Techniques for Improving
Algorithm Teaching. Proceedings of the 3rd ACM
Symposium on Software Visualization (SoftVis '06).

inroads — SIGCSE Bulletin - 164 - Volume 40, Number 4 — 2008 December

(Brighton, UK). ACM Press, New York, NY, USA, 2006,
175-176.

[69] Kitcher, P. The advancement of science. Oxford University
Press, New York, 1993.

[70] Kolb, D. A. Experiential Learning: Experience as the
Source of Learning and Development. Prentice-Hall Inc,
New Jersey, USA, 1984.

[71] Korhonen, A. Visual Algorithm Simulation. Ph.D. Thesis,
Dept. of Computer Science, Helsinki University of
Technology, 2003.

[72] Ktoridou, D. and Eteokleous, N. Adaptive M-learning:
Technological and Pedagogical Aspects to be Considered
in Cyprus Tertiary Education. Proceedings of the 3rd
International Conference on Multimedia and Information
and Communication Technologies in Education (m-
ICTE2005). 2005.

[73] Kumar, A. Generation of problems, answers, grade, and
feedback – Case study of a fully automated tutor. Journal
of Educational Resources in Computing, 5, 3 (September
2005), article 3.

[74] Laurel, B. Computers as Theatre. Addison-Wesley, 1993.
[75] Learning Environments for Progressive Inquiry Research

Group. Fle3 > Future Learning Environment.
http://fle3.uiah.fi (2008).

[76] Lehtinen, E. and Rui, E. Computer supported complex
learning: An environment for learning experimental
method and statistical inference. Machine Mediated
Learning, 5, 3&4 (1995), 149-175.

[77] Lehtinen, E., Hakkarainen, K., Lipponen, L., Rahikainen,
M. and Muukkonen, H. Computer Supported Collaborative
Learning: A Review. The J.H.G.I. Giesbers Reports on
Education, Nr. 10,. Department of Educational Sciences,
University of Nijmegen, 1999.

[78] Lesgold, A., Weiner, A. and Suthers, D. Tools for thinking
about complex issues. Proceedings of the 6th European
Conference for Research on Learning and Instruction,
1996.

[79] Linn, M. C., Davis, E. A. and Bell, P. Internet
Environments for Science Education. Lawrence Erlbaum
Associates, Inc, Mahwah, NJ, USA, 2004.

[80] Liu, T., Kiang, J., Wang, H. and Wei,TakWai Chan and
LiHsing. Embedding EduClick in Classroom to Enhance
Interaction. Proceedings of the International Conference on
Computers in Education (ICCE. (Hong Kong, China).
IEEE Press, 2003, 117-125.

[81] Lockitt, B. Mobile Learning. http://nt6140.vs.netbenefit.
co.uk/pdf/handheldcomputing3t.pdf (2005).

[82] Lukosch, S. and Schümmer, T. Groupware development
support with technology patterns. International Journal of
Man-Machine Studies, 64, 7 (2006), 599-610.

[83] MacManus, T. Mobile What? The Educational Potential of
Mobile Technologies. Proceedings of the World
Conference on E-Learning in Corporations, Government,
Health, and Higher Education. 2002, 1895–1898.

[84] Malmi, L., Karavirta, V., Korhonen, A., Nikander, J.,
Seppälä, O. and Silvasti, P. Visual Algorithm Simulation

Exercise System with Automatic Assessment: TRAKLA2.
Informatics in Education, 3, 2 (2004), 267-288.

[85] Manolescu, D., Voelter, M. and Noble, J. Pattern
Languages of Program Design 5 (Software Patterns Series).
Addison-Wesley Longman Publishing Co., Inc., 2006.

[86] McConnell, J. Active and Cooperative Learning: Tips and
Tricks (Part I). SIGCSE Bulletin, 37, 2 (2005), 27-30.

[87] McCracken, M., Almstrum, V., Diaz, D., Guzdial, M.,
Hagan, D., Kolikant, Y., Laxer, C., Thomas, L., Utting, I.
and Wilusz, T. A multi-national, multi-institutional study
of assessment of programming skills of first-year CS
students. In SIGCSE Bulletin. 33, 4, (2001), 125-180.

[88] Meisalo, V. and Lavonen, J. Bits and processes on markets
and webs. An analysis of virtuality, reality and metaphors
in a modern learning environment. Journal Teacher
Researcher, 2 (2000), 10-27.

[89] Meisalo, V., Sutinen, E. and Tarhio, J. Modernit
oppimisympäristöt. Tietosanoma, Finland, 2003.

[90] Mitrovic, A. Learning SQL with a computerized tutor.
SIGCSE Bulletin, 30, 1 (1998), 307-311.

[91] Moreno, A. Program Animation Activities in Moodle.
Proceedings of the 13th Conference on Innovation and
Technology in Computer Science Education, (Madrid,
Spain). ACM Press, New York, NY, USA, 2008, 361-361.

[92] Moreno, A., Myller, N., Sutinen, E. and Ben-Ari, M.
Visualizing programs with Jeliot 3. Proceedings of
Advanced Visual Interfaces, AVI 2004. 2004, 373-376.

[93] Morth, T., Oechsle, R., Schloss, H. and Schwinn, M.
Automatische Bewertung studentischer Software.
Proceedings der Pre-Conference Workshops der 5. e-
Learning Fachtagung Informatik (DeLFI 2007). (Siegen,
Germany). Logos Verlag Berlin, 2007.

[94] Muir, D. Adapting Online Education to Different Learning
Styles. In Anonymous Proceedings of the National
Educational Computing Conference, “Building on the
Future”. Chigago, IL, 2001, 1-15.

[95] Munoz, M. and Kloos, C. A Web Service Based
Architecture for Push-Enabled M-Learning. Proceedings of
IADIS Mobile Learning Conference. (Malta). IADIS Press,
Lisbon, Portugal, 2005, 135-140.

[96] Myller, N., Laakso, M. and Korhonen, A. Analyzing
engagement taxonomy in collaborative algorithm
visualization. Proceedings of the 12th Conference on
Innovation and Technology in Computer Science
Education. (Dundee, Scotland, UK). ACM Press, New
York, NY, USA, 2007, 251-255.

[97] Naps, T. L. JHAVÉ -- Addressing the Need to Support
Algorithm Visualization with Tools for Active
Engagement. IEEE Computer Graphics and Applications,
25, 5 (2005), 49-55.

[98] Naps, T. L. and Rößling, G. JHAVÉ - More Visualizers
(and Visualizations) Needed. In Rößling, G. Ed.
Proceedings of the Fourth Program Visualization
Workshop. Electronic Notes in Theoretical Computer
Science, 178, 4 (2007), 33-41.

[99] Naps, T. L., Rößling, G., Almstrum, V., Dann, W.,
Fleischer, R., Hundhausen, C., Korhonen, A., Malmi, L.,

inroads — SIGCSE Bulletin - 165 - Volume 40, Number 4 — 2008 December

McNally, M., Rodger, S. and Velázquez-Iturbide, J. Á.
Exploring the Role of Visualization and Engagement in
Computer Science Education. SIGCSE Bulletin, 35, 2
(2003), 131-152.

[100] Northumbria Learning. JISC Plagiarism Advisory Service.
http://jiscpas.ac.uk/

[101] Novak, J. D. Learning, Creating, and Using Knowledge:
Concept Maps as Facilitative Tools in Schools and
Corporations. Lawrence Erlbaum Associates, 1998.

[102] O’Malley, C., Vavoula, G., Glew, J., Taylor, J., Sharples,
M. and Lefrere, P. Guidelines for
Learning/Teaching/Tutoring in a Mobile Environment.
Open University, 2003.

[103] Pareja-Flores, C., Urquiza-Fuentes, J. and Velázquez-
Iturbide, J. Á. WinHIPE: An IDE for functional
programming based on rewriting and visualization. ACM
SIGPLAN Notices, 42, 3 (2007), 14-23.

[104] Parlante, N. JavaBat java practice problems.
http://javabat.com.

[105] Parsons, D. and Ryu, H. A Framework for Assessing the
Quality of Mobile Learning. Learning and Teaching Issues
in Software Quality, Proceedings of the 11th International
Conference for Process Improvement, Research and
Education (INSPIRE). (Southampton Solent University,
UK). 2006, 17-27.

[106] Parsons, D., Ryu, H. and Cranshaw, M. A Study of
Design Requirements for Mobile Learning Environments.
Proceedings of the IEEE International Conference on
Advanced Learning Technologies 2006 (ICALT). 2006,
96-100.

[107] Pavlovic, J., Pitner, T. and Kubasek, M. Digital Library
for PDA Facilities. Proceedings of IADIS Mobile Learning
Conference. (Malta). IADIS Press, Lisbon, Portugal, 2005,
169-275.

[108] Peterson, P. and Swing, S. Student Cognitions as
Mediators of the Effectiveness of Small Group Learning.
Journal of Educational Psychology., 36(1985), 351-372.

[109] Phillips, D. C. Ed. Constructivism in Education (Ninety-
Ninth NSSE Yearbook). University of Chicago Press,
Chicago, IL, 2000.

[110] PPP: The Pedagogical Patterns Project. Pedagogical
Patterns.http://www.pedagogicalpatterns.org.

[111] Prechelt, L., Malpohl, G. and Philippsen, M. Finding
Plagiarisms among a Set of Programs with JPlag. Journal
of Universal Computer Science, 8, 11 (November 2002),
1016-1038.

[112] Qiu, L. and Riesbeck, C. K. An incremental model for
debeloping computer-based learning environments for
problem-based learning. ICALT 2004: Proceedings of the
IEEE International Conference on Advanced Learning
Technologies. (Washington, DC). IEEE Computer Society,
2004, 171-175.

[113] Radenski, A. Digital Support for Abductive Learning in
Introductory Computing Courses. Proceedings of the 38th
SIGCSE Technical Symposium on Computer Science
Education (Covington, KY, USA). ACM, New York, NY,
USA, 2007, 14-18.

 [114] Radenski, A. Python First: A Lab-Based Digital
Introduction to Computer Science. Proceedings of the 11th
Conference on Innovation and Technology in Computer
Science Education (Bologna, Italy). ACM, New York, NY,
USA, 2006, 197-201.

[115] Rajala, T., Laakso, M., Kaila, E. and Salakoski, T. VILLE
– A Language-Independent Program Visualization tool.
Proceedsing of Seventh Baltic Sea Conference on
Computing Education Research (Koli Calling).
Conferences in Research and Practice in Information
Technology 88, (2008).

[116] Razmov, V. and Anderson, R. Pedagogical Techniques
Supported by the Use of Student Devices in Teaching
Software Engineering. Proceedings of the 37th SIGCSE
Technical Symposium on Computer Science Education
(Houston, Texas, USA,). ACM, New York, NY, USA,
2006, 344-348.

[117] Rising, L. Understanding the Power of Abstraction in
Patterns. IEEE Software, July-August (2007), 2-7.

[118] Rodger, S. and Finley, T. JFLAP - An Interactive Formal
Languages and Automata Package. Jones and Bartlett,
2006.

[119] Roschelle, J., Tatar, D., Chaudhury, S. R., Dimitriadis, Y.,
Patton, C. and DiGiano, C. Ink, Improvisation, and
Interactive Engagement: Learning with Tablets. IEEE
Computer, 40, 9 (2007), 42-48.

[120] Ross, R. Hypertextbooks and a Hypertextbook Authoring
System. Proceedings of the 13th Conference on Innovation
and Technology in Computer Science Education. (Madrid,
Spain). ACM Press, New York, NY, USA, 2008, 133-137.

[121] Ross, R. Theory of Computing.
http://www.cs.montana.edu/
webworks/projects/theoryportal/.

[122] Rößling, G. and Ackermann, T. A Framework for
Generating AV Content on-the-fly. In Rößling, G. Ed.
Proceedings of the Fourth Program Visualization
Workshop, Electronic Notes in Theoretical Computer
Science 178, 4 (2007), 23-31 .

 [123] Rößling, G. and Hartte, S. WebTasks: Online
Programming Exercises Made Easy. Proceedings of the
13th Conference on Innovation and Technology in
Computer Science Education Conference. (Madrid, Spain).
ACM Press, New York, NY, USA, 2008, 363.

[124] Rößling, G., Mehlhase, S. and Pfau, J. A Java API for
Creating (not only) AnimalScript. Proceedings of the
Program Visualization Workshop 2008 (PVW 2008),
(2008), 105-112.

[125] Rößling, G. and Vellaramkalayil, T. First Steps Towards a
Visualization-Based Computer Science Hypertextbook as a
Moodle Plugin. Proceedings of the Program Visualization
Workshop 2008 (PVW 2008), (2008), 29-36.

[126] Rößling, G. Translator: A Package for Internationalization
for Java-based Applications and GUIs. Proceedings of the
12th Conference on Innovation and Technology in
Computer Science Education (ITiCSE 2006). (Bologna,
Italy). ACM Press, New York, NY, USA, 2006, 312.

inroads — SIGCSE Bulletin - 166 - Volume 40, Number 4 — 2008 December

 [127] Rößling, G. and Freisleben, B. ANIMAL: A System for
Supporting Multiple Roles in Algorithm Animation.
Journal of Visual Languages and Computing, 13, 3 (2002),
341-354.

[128] Rößling, G. and Freisleben, B. AnimalScript: An
Extensible Scripting Language for Algorithm Animation.
Proceedings of the 32nd SIGCSE Technical Symposium on
Computer Science Education (SIGCSE 2001). (Charlotte,
North Carolina, USA). ACM Press, New York, NY, USA,
2001, 70-74.

[129] Rößling, G. and Naps, T. L. A Testbed for Pedagogical
Requirements in Algorithm Visualizations. Proceedings of
the 7th Conference on Innovation and Technology in
Computer Science Education (ITiCSE 2002). (Århus,
Denmark).ACM Press, New York, NY, USA, 2002, 96-
100.

[130] Rößling, G., Naps, T., Hall, M. S., Karavirta, V., Kerren,
A., Leska, C., Moreno, A., Oechsle, R., Rodger, S. H.,
Urquiza-Fuentes, J. and Velázquez- Iturbide, J. Á. Merging
Interactive Visualizations with Hypertextbooks and Course
Management. SIGCSE Bulletin, 38, 4 (2006), 166-181.

[131] Rößling, G., Trompler, C., Mühlhäuser, M., Köbler, S.
and Wolf, S. Enhancing Classroom Lectures with Digital
Sliding Blackboards. Proceedings of the 9h Conference on
Innovation and Technology in Computer Science
Education (ITiCSE 2004). (Leeds, UK). ACM Press, New
York, NY, USA, 2004, 218-222.

[132] Scardamalia, M. and Bereiter, C. Technologies for
knowledge-building discourse. Communications of the
ACM, 36, 5 (1993), 37-41.

[133] Scheele, N., Seitz, C., Effelsberg, W. and Wessels, A.
Mobile Devices in Interactive Lectures. Proceedings of the
World Conference on Educational Multimedia,
Hypermedia & Telecommunication (ED-MEDIA).
(Lugano, Switzerland). AACE Press, Charlottesville, VA,
USA, 2004, 154-161.

[134] Sesink, W., Göller, S., Rößling, G. and Hofmann, D.
eMargo: Eine Digitale Randspalte zum Selbststudium
(nicht nur) der Informatik. Proceedings der Pre-Conference
Workshops der 5. e-Learning Fachtagung Informatik
(DeLFI 2007). (Siegen, Germany). Logos Verlag Berlin,
Germany, 101-108.

[135] Shakshuki, E., Müldner, T. and Kerren, A. Algorithm
Education Using Structured Hypermedia. Advances in
Distance Education Technologies Series 2, 5 (2008)), 58-
84.

[136] Skinner, B. F. The Technology of Teaching. Appleton-
Century-Crofts, New York, 1968.

[137] Soloway, E., Guzdial, M. and Hay, K. E. Learner-centered
design: the challenge for HCI in the 21st century.
Interactions, 1, 2 (April 1994), 36-48.

[138] Srinivas, H. 44 Benefits of Collaborative Learning.
http://www.gdrc.org/kmgmt/c-learn/44.html

[139] Stasko, J. T., Domingue, J., Brown, M. H. and Price, B. A.
Software Visualization. MIT Press, USA, 1998.

[140] Suzuki H., Hiroshi K. Identity formation/transformation as
the process of collaborative learning through AlgoArena.
Proceedings of The Second International Conference on
Computer Support for Collaborative Learning. (Toronto,
Ontario, Canada). 1997, 280-288.

[141] Sykes, E. Developmental process model for the Java
intelligent tutoring system. Journal of Interactive Learning
Research, 18, 3 (2007), 399-410.

[142] Trætteberg, H. and Aalberg, T. JExercise: a specification-
based and test-driven exercise support plugin for Eclipse.
Proceedings of the 2006 OOPSLA workshop on Eclipse
technology eXchange. (Portland, Oregon, USA). ACM
Press, New York, NY, USA, 2006, 70-74.

[143] Trnkova, J., Rößling, G., Sugonyak, O. and Mühlhäuser,
M. WiBA-Net: A Web-Based Learning Platform for Civil
Engineers and Architects. Proceedings of the World
Conference on Educational Multimedia, Hypermedia and
Telecommunications (ED-MEDIA). (Lugano,
Switzerland). AACE Press, Charlottesville, VA, USA,
2004, 144-149.

[144] Velázquez-Iturbide, J. A., Perez-Carrasco, A. and
Urquiza-Fuentes, J. SRec: An animation system of
recursion for algorithm courses. Proceedings of the 13th
Conference on Innovation and Technology in Computer
Science Education, ITiCSE 2008. (Madrid, Spain). ACM
Press, New York, NY, USA, 2008, 225-229.

[145] Velázquez-Iturbide, J. A., Redondo-Martin, D., Pareja-
Flores, C. and Urquiza-Fuentes, J. An instructor’s guide to
design web-based algorithm animations. LNCS,
4823(2008), 440-451.

[146] Vogel, R. and Wippermann, S. Didaktische Design Pattern
zur Dokumentation von Lehr-Lern-Formen an
Hochschulen. http://www.didaktische-design-
patterns.de/index.html (2005).

[147] Vygotsky, L. S. Mind in Society: The Development of
Higher Psychological Processes. Harvard University Press.,
Cambridge MA, 1978.

[148] Wagner, G. VisionQuest Users Guide. Collaborative
Technologies Co., Austin, TX, 1991.

[149] WebPA. Webpage. http://webpaproject.lboro.ac.uk.
[150] White, D. R. and Joy, M. S. Sentence-based natural

language plagiarism detection. Journal of Educational
Resources in Computing, 4, 4 (2004), 2.

[151] Wilkerson, M., Griswold, W. G. and Simon, B.
Ubiquitous presenter: increasing student access and control
in a digital lecturing environment. SIGCSE Bulletin, 37, 1
(2005), 116-120.

[152] Woolley, J. D. Young children's understanding of fictional
versus epistemic mental representations: Imagination and
belief. Child Development, , 66 (1995), 1011-1021.

[153] Yudelson, M., Brusilovsky, P. and Zadorozhny, V. A user
modeling server for contemporary adaptive hypermedia:
An evaluation of the push approach to evidence
propagation. In Conati, C., McCoy, K. F. and Paliouras, G.
Eds.User Modeling, Volume 4511 of Lecture Notes in
Computer Science. Springer, Heidelberg, 2007, 27-36.

